19.已知等差數(shù)列{an}中,a1+a4=11,a3+a5=2,
求:(1)a1和公差d
(2)該數(shù)列的前15項的和S15的值.

分析 (1)利用等差數(shù)列的通項公式列出方程組,能求出a1和公差d.
(2)利用等差數(shù)列的前n項和公式求解.

解答 解:(1)∵等差數(shù)列{an}中,a1+a4=11,a3+a5=2,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}+3d=11}\\{{a}_{1}+2d+{a}_{1}+4d=2}\end{array}\right.$,
解得a1=10,公差d=-3.
(2)∵a1=10,公差d=-3,
∴數(shù)列的前15項的和:
S15=15×$10+\frac{15×14}{2}×(-3)$=-165.

點評 本題考查等差數(shù)列的通項公式和前15項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和為Sn,a1=0,4Sn=1-an+1,n∈N*
(1)求{an}的通項公式;
(2)記bn=(-1)nlog3a2n,求{bn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上所對應(yīng)的點為Z(a,b),請在復(fù)平面上畫出分別滿足下列條件的點Z所在位置的區(qū)域(用陰影部分表示)

(1)|a|>2,b<0;
(2)|a|≤1,|b|≤1;
(3)|z|<2;
(4)1≤|z|<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計算(sin30)0-|-5|+($\frac{1}{2}$)-1+$\sqrt{(-7)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{a}$≠$\overrightarrow{e}$,|$\overrightarrow{e}$|=1,若|$\overrightarrow{a}$-t$\overrightarrow{e}$|≥|$\overrightarrow{a}$-$\overrightarrow{e}$|對t∈R恒成立,則向量$\overrightarrow{e}$與向量$\overrightarrow{a}$-$\overrightarrow{e}$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)向量$\overrightarrow{a}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),$\overrightarrow$=(sin$\frac{3x}{2}$,cos$\frac{3x}{2}$),x∈[0,$\frac{π}{2}$].
(1)求$\overrightarrow{a}$•$\overrightarrow$與|$\overrightarrow{a}$+$\overrightarrow$|;
(2)若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+$\sqrt{2}$|$\overrightarrow{a}$+$\overrightarrow$|,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若關(guān)于直線y=k(x一1)對稱的兩點M,N均在圓C:(x+3)2+(y-4)2=16上,且直線MN與圓x2+y2=2相切,則直線MN的方程是y=x±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知0<x<$\frac{3}{2}$,則y=$\frac{2}{x}$+$\frac{9}{3-2x}$的最小值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,已知a=4,c=3,cosA=-$\frac{1}{3}$.
(1)求角C的大;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案