分析 由題意可得0<3-2x<3,整體代入變形可得y=$\frac{4}{2x}$+$\frac{9}{3-2x}$=($\frac{4}{2x}$+$\frac{9}{3-2x}$)[2x+(3-2x)]=13+$\frac{4(3-2x)}{2x}$+$\frac{18x}{3-2x}$,由基本不等式可得.
解答 解:∵0<x<$\frac{3}{2}$,∴0<3-2x<3,
∴y=$\frac{2}{x}$+$\frac{9}{3-2x}$=$\frac{4}{2x}$+$\frac{9}{3-2x}$=($\frac{4}{2x}$+$\frac{9}{3-2x}$)[2x+(3-2x)]
=13+$\frac{4(3-2x)}{2x}$+$\frac{18x}{3-2x}$≥13+2$\sqrt{\frac{4(3-2x)}{2x}•\frac{18x}{3-2x}}$=25
當(dāng)且僅當(dāng)$\frac{4(3-2x)}{2x}$=$\frac{18x}{3-2x}$即x=$\frac{3}{5}$時(shí)取等號(hào).
故答案為:25.
點(diǎn)評(píng) 本題考查基本不等式求最值,整體變形為可用基本不等式的形式是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,+∞) | B. | (-1,+∞) | C. | [1,+∞) | D. | [-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com