分析 根據(jù)向量的坐標運算得到$\overrightarrow{AB}$=$\overrightarrow{DC}$,即可得到四邊形ABCD是平行四邊形,再求出$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,且|$\overrightarrow{AC}$|=|$\overrightarrow{BD}$|,平行四邊形ABCD是正方形.
解答 解:∵$A({4,1+\sqrt{2}}),B({1,5+\sqrt{2}}),C({-3,2+\sqrt{2}})D({0,-2+\sqrt{2}})$,
∴$\overrightarrow{AB}$=(-3,4),$\overrightarrow{DC}$=(-3,4),
∴$\overrightarrow{AB}$=$\overrightarrow{DC}$,
∴$\overrightarrow{AB}$∥$\overrightarrow{DC}$,且|$\overrightarrow{AB}$|=|$\overrightarrow{DC}$|,
∴四邊形ABCD是平行四邊形;
∵$\overrightarrow{AC}$=(-7,1),$\overrightarrow{BD}$=(-1,-7),
∴$\overrightarrow{AC}$•$\overrightarrow{BD}$=7-7=0,
∴$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,且|$\overrightarrow{AC}$|=|$\overrightarrow{BD}$|,
∴平行四邊形ABCD是正方形.
點評 本題考查了平面向量的坐標表示,也考查了平面向量的坐標運算問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $4\sqrt{2}π$ | B. | $8\sqrt{2}π$ | C. | 4π | D. | $4\sqrt{2}π+4π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2-\sqrt{3}}{4}$ | B. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ | C. | $\frac{2±\sqrt{3}}{4}$ | D. | $\frac{\sqrt{2}±\sqrt{6}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com