分析 由已知數(shù)列遞推式可得數(shù)列{$\frac{1}{{S}_{n}}$}是以-1為首項(xiàng),以-1為公差的等差數(shù)列,求其通項(xiàng)公式后,利用an=Sn-Sn-1求得數(shù)列{an}的通項(xiàng)公式.
解答 解:由an+1=Sn•Sn+1,得:
Sn+1-Sn=Sn•Sn+1,
即$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}=-1$,
∴數(shù)列{$\frac{1}{{S}_{n}}$}是以-1為首項(xiàng),以-1為公差的等差數(shù)列,
則$\frac{1}{{S}_{n}}=-1-(n-1)=-n$,∴${S}_{n}=-\frac{1}{n}$.
∴當(dāng)n≥2時(shí),${a}_{n}={S}_{n}-{S}_{n-1}=-\frac{1}{n}+\frac{1}{n-1}=\frac{1}{n(n-1)}$.
n=1時(shí)上式不成立,
∴${a}_{n}=\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了等差數(shù)列通項(xiàng)公式的求法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2或6 | B. | 0或8 | C. | 2或0 | D. | 6或8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (-∞,1)∪(2,+∞) | C. | (-∞,2) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com