9.將三項式(x2+x+1)n展開,當n=0,1,2,3,…時,得到以下等式:

(x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
觀察多項式系數(shù)之間的關系,可以仿照楊輝三角構造如圖所示的廣義楊輝三角形,其構造方法為:第0行為1,以下各行每個數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計為0)之和,第k行共有2k+1個數(shù).若在(1+ax)(x2+x+1)5的展開式中,x8項的系數(shù)為75,則實數(shù)a的值為2.

分析 由題意可得廣義楊輝三角形第5行為1,5,15,30,45,51,45,30,15,5,1,所以(1+ax)(x2+x+1)5的展開式中,x8項的系數(shù)為15+30a=75,即可求出實數(shù)a的值

解答 解:由題意可得廣義楊輝三角形第5行為1,5,15,30,45,51,45,30,15,5,1,
所以(1+ax)(x2+x+1)5的展開式中,x8項的系數(shù)為15+30a=75,
所以a=2.
故答案為:2.

點評 本題考查二項式定理的運用以及歸納推理,解題的關鍵在于發(fā)現(xiàn)所給等式的系數(shù)變化的規(guī)律

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知曲線y=2x2上一點A(2,8),則A處的切線斜率為(  )
A.4B.8C.16D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知等差數(shù)列{an}滿足a3=-9,公差d=3.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{an}的前n項和Sn是否存在最小值?若存在,求出Sn的最小值及此時n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設雙曲線  $\frac{x^2}{a^2}-\frac{y^2}{9}=1(a>0)$的一條漸近線方程為3x-2y=0,則a=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在△ABC中,如果(a+b+c)(b+c-a)=bc,則A=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.四棱錐P-ABCD的底面ABCD為平行四邊形,且AB=2,BC=1,AC=2,記平面PAD與平面PBC的交線為m,平面PAB與平面PDC的交線為n,則m與n所成的銳角的余弦值為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{7}{32}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.觀察:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a9+b9=( 。
A.28B.76C.123D.199

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知如圖是一個空間幾何體的三視圖.
(1)該空間幾何體是如何構成的;
(2)求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.若函數(shù)f(x)滿足f(x)=f(x+$\frac{3π}{2}$)且f($\frac{π}{4}$+x)=f($\frac{π}{4}$-x)(x∈R),則稱函數(shù)f(x)為“M函數(shù)”.
(1)試判斷f(x)=sin$\frac{4}{3}$x是否為“M函數(shù)”,并說明理由;
(2)函數(shù)f(x)為“M函數(shù)”,且當x∈[$\frac{π}{4}$,π]時,f(x)=sinx,求y=f(x)的解析式,并寫出在[0,$\frac{3π}{2}$]上的單調(diào)遞增區(qū)間;
(3)在(2)條件下,當x∈[-$\frac{π}{2}$,$\frac{3kπ}{2}$+π](k∈N)時,關于x的方程f(x)=a(a為常數(shù))有解,記該方程所有解的和為S(k),求S(k).

查看答案和解析>>

同步練習冊答案