7.已知集合M={-2,-1,0,1,2},N={x|$\frac{x-2}{x+1}$≤0},則M∩N=( 。
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

分析 求出N中不等式的解集確定出N,找出M與N的交集即可.

解答 解:由N中不等式變形得:(x-2)(x+1)≤0,且x+1≠0,
解得:-1<x≤2,即N=(-1,2],
∵M(jìn)={-2,-1,0,1,2},
∴M∩N={0,1,2},
故選:D.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某市共有2500個行政村,根據(jù)經(jīng)濟(jì)的狀況分為貧困村1000個,脫貧村900個,小康村600個,為了解各村的路況,采用分層抽樣的方法,若從本市中抽取100個村,則從貧困村和小康村抽取的樣本數(shù)分別為( 。
A.40、24B.40、36C.24、36D.24、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知條件p:f(x)=x2+mx+1在區(qū)間($\frac{1}{2}$,+∞)上單調(diào)遞增,條件q:m≥-$\frac{4}{3}$,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點(diǎn).
(1)求證:平面CFM⊥平面BDF;
(2)若點(diǎn)N為線段CE的中點(diǎn),EC=2,F(xiàn)D=3,求證:MN∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,c=2,acosC=csinA,若當(dāng)a=x0時的△ABC有兩解,則x0的取值范圍是( 。
A.(1,2)B.(1,$\sqrt{3}$)C.($\sqrt{2}$,2$\sqrt{2}$)D.(2,2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.8個相同的球放入標(biāo)號為1,2,3的三個盒子中,每個盒子中至少有一個,共有21種不同的放法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線l與兩條漸近線交于P、Q兩點(diǎn),如果△PQF是等邊三角形,則雙曲線的離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求三棱錐A-BCP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,短軸兩個端點(diǎn)為A,B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上一點(diǎn),M($\frac{1}{2}$,0)為橢圓長軸上一點(diǎn),求|PM|的最大值與最小值;
(3)設(shè)Q是橢圓外C的動點(diǎn),滿足|$\overrightarrow{{F_1}Q}$|=4,點(diǎn)R是線段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線段F2Q上,并且滿足$\overrightarrow{RT}$•$\overrightarrow{T{F_2}}$=0,|$\overrightarrow{T{F_2}}$|≠0,求點(diǎn)T的軌跡C的方程.

查看答案和解析>>

同步練習(xí)冊答案