精英家教網 > 高中數學 > 題目詳情
14.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求三棱錐A-BCP的體積.

分析 (1)由PD⊥平面ABCD可得PD⊥BC,又BC⊥CD,故BC⊥平面PCD,從而得出BC⊥PC;
(2)以△ABC為底面,則棱錐的高為PD,代入棱錐的體積公式計算即可.

解答 證明:(1)∵PD⊥平面ABCD,BC?平面ABCD
∴PD⊥BC,
∵∠BCD=90°,
∴BC⊥DC,
又PD∩DC=D,PD?平面PCD,DC?平面PCD,
∴BC⊥平面PCD,
∵PC?平面PCD,
∴PC⊥BC.
解:(2)連結AC,
∵AB∥DC,∠BCD=90°,
∴∠ABC=90°.
∴S△ABC=$\frac{1}{2}AB•BC$=$\frac{1}{2}×2×1$=1.
∵PD⊥平面ABCD,
∴VA-BCP=VP-ABC=$\frac{1}{3}{S}_{△ABC}•PD$=$\frac{1}{3}×1×1=\frac{1}{3}$.

點評 本題考查了線面垂直的判定與性質,棱錐的體積計算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

6.已知f(x)=$\left\{\begin{array}{l}{log}_{2}(1-x)(x≤0)\\ f(x-1)-f(x-2)(x>0)\end{array}$,則f(3)+f(-1)=( 。
A.-3B.-1C.0D.1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知集合M={-2,-1,0,1,2},N={x|$\frac{x-2}{x+1}$≤0},則M∩N=( 。
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.如圖在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=$\sqrt{3}$,點F是PD中點,$\overrightarrow{CE}$=λ$\overrightarrow{CD}$(0<λ<1).
(Ⅰ)當λ=$\frac{1}{2}$時,判斷EF與平面PAC的位置關系,并加以證明;
(Ⅱ)證明:無論λ取何值,都有AF⊥FE;
(Ⅲ)試探究三棱錐B-AFE的體積是否為定值,若是求出該定值,若不是說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.如圖所示,在側棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB═$\sqrt{2}$,AD=2,BC=4,AA1=2,E,F分別是DD1,AA1的中點.
(I)證明:EF∥平面B1C1CB;
(11)求多面體A1B1F-D1C1E的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知雙曲線的一個焦點與拋物線y2=20x的焦點重合,其一條漸近線的斜率等于$\frac{3}{4}$,則該雙曲線的標準方程為( 。
A.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.若直線l交拋物線C:y2=2px(p>0)于兩不同點A,B,且|AB|=3p,則線段AB中點M到y(tǒng)軸距離的最小值為( 。
A.$\frac{p}{2}$B.pC.$\frac{3p}{2}$D.2p

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率是$\frac{{\sqrt{3}}}{2}$,且橢圓C上任意一點到兩個焦點的距離之和是4.直線l:y=kx+m與橢圓C相切于點P,且點P在第二象限.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)求點P的坐標(用k表示);
(Ⅲ)若過坐標原點O的直線l1與l垂直于點Q,求|PQ|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知a、b、c分別為△ABC的三個內角A、B、C的對邊,若a=$\sqrt{6}$,b=2,B=45°,則角A等于( 。
A.60°B.120°C.60°或120°D.30°

查看答案和解析>>

同步練習冊答案