分析 (1)連接AO交BC于點(diǎn)E,連接PE,由三角形中心的性質(zhì)可得AO=2OE,從而DO∥PE,得出線面平行;
(2)由平面PBC⊥平面ABC可得PE⊥平面ABC,由DO∥PE可得DO⊥平面ABC,故DO⊥AC,由三角形中心性質(zhì)得AC⊥BO,從而AC⊥平面DOB,得出BD⊥AC.
解答 解:(1)連接AO交BC于點(diǎn)E,連接PE,
∵O為正三角形ABC的中心,∴AO=2EO,
又AD=2DP,∴DO∥PE,
∵DO?平面PBC,PE?平面PBC,
∴DO∥平面PBC.
(2)∵PB=PC,且E為BC中點(diǎn),∴PE⊥BC,
又平面PBC⊥平面ABC,∴PE⊥平面ABC,
由(1)知,DO∥PE,∴DO⊥平面ABC,
∴DO⊥AC.連接BO,則AC⊥BO,
又DO∩BO=O,DO?平面DOB,BO?平面DOB,
∴AC⊥平面DOB,∵BD?平面DOB,
∴AC⊥BD.
點(diǎn)評(píng) 本題考查了線面平行,線面垂直的判定,面面垂直的性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m∥α,n∥α,則m∥n | B. | 若m∥α,m∥β,則α∥β | C. | 若m∥n,n⊥α,則m⊥α | D. | 若m∥α,α⊥β,則m⊥β |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com