8.已知角α終邊上一點$P({-3,b}),sinα=\frac{5}$.
(1)求tanα的值;
(2)設$f(α)=\frac{{sin({{{540}°}-α})cos({{{270}°}-α})cos({{{180}°}+α})}}{{tan({{{900}°}-α})sin({{{810}°}+α})sin({-α})}}$,試求f(α)的值.

分析 (1)由條件利用任意角的三角函數(shù)的定義,求得tanα得值.
(2)由條件利用誘導公式、以及三角函數(shù)在各個象限中的符號,求得f(α)的值.

解答 解:(1)∵角α終邊上一點$P({-3,b}),sinα=\frac{5}$,∴(-3)2+b2=25,∴b=±4,
∴tanα=$\frac{±4}{-3}$=±$\frac{4}{3}$.
(2)$f(α)=\frac{{sin({{{540}°}-α})cos({{{270}°}-α})cos({{{180}°}+α})}}{{tan({{{900}°}-α})sin({{{810}°}+α})sin({-α})}}$=$\frac{sin(180°-α)•(-sinα)•(-cosα)}{tan(180°-α)•sin(90°+α)•(-sinα)}$
=$\frac{sinα•(-cosα)}{-tanα•cosα}$=cosα=$\frac{-3}{5}$=-$\frac{3}{5}$.

點評 本題主要考查任意角的三角函數(shù)的定義,誘導公式的應用,以及三角函數(shù)在各個象限中的符號,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.無窮數(shù)列{an}滿足${a_i}∈{N^*}$,且${a_i}≤{a_{i+1}}(i∈{N^*})$,對于數(shù)列{an},記${b_k}=min\left\{{n|{a_n}≥k}\right\}(k∈{N^*})$,其中min{n|an≥k}表示集合{n|an≥k}中的最小數(shù)
(1)若數(shù)列{an}:1,3,5,7,…,請寫出${b_1},{b_2},{b_{a_2}}$;
(2)已知Tn=${a_1}+{a_2}+…+{a_n}+{b_1}+{b_2}+…+{b_{a_n}},求證{T_n}=(n+1){a_n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求下列曲線的標準方程:
(1)與橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1有相同的焦點,直線y=$\sqrt{3}$x為一條漸近線.求雙曲線C的方程.
(2)焦點在直線3x-4y-12=0 的拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若全集U=R,集合M={x|x(x-2)≤0},N={1,2,3,4},則N∩∁UM={3,4}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知等比數(shù)列{an}的各項均為正數(shù),a1=1,公比為q;等差數(shù)列{bn}中,b1=3,且{bn}的前n項和為Sn,a3+S3=27,q=$\frac{S_2}{a_2}$.
(Ⅰ)求{an}與{bn}的通項公式;
(Ⅱ)設數(shù)列{cn}滿足cn=$\frac{3}{{2{S_n}}}$,求{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.①y=lgx②y=cosx③y=|x|④y=sinx,在上述函數(shù)中,函數(shù)的圖象關于坐標原點對稱的是④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列函數(shù)中,在定義域內既是奇函數(shù)又是增函數(shù)的是( 。
A.y=sinx+1B.y=$\frac{1}{x}$C.y=x2D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=lg(sinx-$\frac{1}{2}$)的定義域為$\left\{{\left.x\right|\frac{π}{6}+2kπ<x<\frac{5π}{6}+2kπ,k∈Z}\right\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如果函數(shù)f(x)=x2sinx+a的圖象過點(π,1)且f(t)=2.那么a=1;f(-t)=0.

查看答案和解析>>

同步練習冊答案