6.在平面直角坐標系xOy中,已知過點M(1,1)的直線l與圓(x+1)2+(y-2)2=5相切,且與直線ax+y-1=0垂直,則實數(shù)a=$\frac{1}{2}$.

分析 由題意,直線ax+y-1=0的斜率-a=$\frac{2-1}{-1-1}$=-$\frac{1}{2}$,即可得出結(jié)論.

解答 解:由題意,直線ax+y-1=0的斜率-a=$\frac{2-1}{-1-1}$=-$\frac{1}{2}$,
∴a=$\frac{1}{2}$.
故答案為$\frac{1}{2}$.

點評 本題考查直線的斜率,考查直線與圓的位置關(guān)系,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)直線l經(jīng)過點M和點N(-1,1),且點M是直線x-y-1=0被直線l1:x+2y-1=0,l2:x+2y-3=0所截得線段的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,三棱錐P-ABC中,平面PAC⊥平面ABC,AB⊥BC,點D,E在線段AC上,且AD=DE=EC=2,PD=PC=4,點F在線段AB上,且EF∥平面PBC.
(1)證明:EF∥BC
(2)證明:AB⊥平面PEF
(3)若四棱錐P-DFBC的體積為7,求線段BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若tanα=$\sqrt{15}$,則cosα=$±\frac{1}{4}$;sinα=$±\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知點A(0,2),拋物線C:y2=ax(a>0)的焦點為F,射線FA與拋物線C相交于點M,與其準線相交于點N,MK垂直準線于點K,若|KM|:|MN|=1:$\sqrt{5}$,則a的值等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足$\frac{1}{{a}_{n}}$=$\frac{_{1}}{2+1}$-$\frac{_{2}}{{2}^{2}+1}$$+\frac{_{3}}{{2}^{3}+1}$-…+(-1)n+1$\frac{_{n}}{{2}^{n}+1}$,求數(shù)列{bn}的通項公式;
(3)在(2)的條件下,設(shè)cn=2n+λbn,問是否存在實數(shù)λ使得數(shù)列{cn}(n∈N*)是單調(diào)遞增數(shù)列?若存在,求出λ的取值范圍;若不存在,請說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知△ABC的三內(nèi)角A、B、C所對的邊分別是a、b、c,設(shè)向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(sinB,sinA),若$\overrightarrow{m}$$∥\overrightarrow{n}$,且滿足(2a-c)cosB=bcosC,則△ABC的形狀是( 。
A.等腰直角三角形B.鈍角三角形C.等邊三角形D.直角三角形,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={x|log2x>0},B={x|x<2},則( 。
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,∠BAC=60°,E,F(xiàn)分別是AP,AC的中點,點D在棱AB上,且AD=AC.求證:
(1)EF∥平面PBC;
(2)DF⊥平面PAC.

查看答案和解析>>

同步練習冊答案