16.(1)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)
(2)已知函數(shù)f(x)的定義域?yàn)椋?,+∞),且$f(x)=2f(\frac{1}{x})-x$,求f(x)

分析 (1)設(shè)出一次函數(shù)解析式f(x)=ax+b,由題意得到關(guān)于a,b的方程組求得a,b的值,則答案可求;
(2)在已知等式當(dāng)中,以$\frac{1}{x}$替換x,聯(lián)立方程組求得答案.

解答 解:(1)設(shè)f(x)=ax+b(a≠0),
則由3f(x+1)-2f(x-1)=2x+17,得
3[a(x+1)+b]-2[a(x-1)+b]=2x+17,
即(a-2)x+5a+b-17=0,則$\left\{\begin{array}{l}{a-2=0}\\{5a+b-17=0}\end{array}\right.$,解得a=2,b=7.
∴f(x)=2x+7;
(2)由$f(x)=2f(\frac{1}{x})-x$,①
得f($\frac{1}{x}$)=2f(x)-$\frac{1}{x}$,②
把②代入①得:f(x)=$\frac{2}{3x}+\frac{x}{3}$,(x>0).

點(diǎn)評(píng) 本題考查函數(shù)解析式的求解及常用方法,訓(xùn)練了利用待定系數(shù)法求函數(shù)解析式,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n-5an+23,n∈N*,則數(shù)列{an}的通項(xiàng)公式是an=1+$3×(\frac{5}{6})^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,已知正方形ABCD的邊長(zhǎng)為2,E,F(xiàn)分別為BC,CD的中點(diǎn).
求:(1)$\overrightarrow{AE}•\overrightarrow{AF}$的值;
(2)$\overrightarrow{AE}$與$\overrightarrow{AF}$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)f(x)=|x-a|,(a∈R).
(Ⅰ)當(dāng)-2≤x≤3時(shí),f(x)≤4成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若存在實(shí)數(shù)x,使得f(x-a)-f(x+a)≤2a-1成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若f(cosx)=sin3x,則f(sin30°)=( 。
A.-1B.0C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知點(diǎn)P(2,0),點(diǎn)N到原點(diǎn)O與到點(diǎn)M(3,0)的距離之比為$\frac{1}{2}$,點(diǎn)N的軌跡為曲線C.
(1)求過(guò)點(diǎn)P且與曲線C相切的直線的方程;
(2)若過(guò)原點(diǎn)O的直線l與曲線C相交于不同的兩點(diǎn)A,B,求△PAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知圓O:x2+y2=13,經(jīng)過(guò)圓O上任P一點(diǎn)作y軸的垂線,垂足為Q,求線段PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S1、a3、S3成等差數(shù)列,且a2+a3+a4=15,若Sn-1600≥0,則n的最小值為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知數(shù)列{an}是公比大于1的等比數(shù)列,a6•a12=6,a4+a14=5,則$\frac{{{a}_{20}}}{{{a}_{10}}}$等于( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{3}{2}$或$\frac{2}{3}$D.-$\frac{2}{3}$或-$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案