19.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,并且2,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{log{{\;}_{2}a}_{n}}{{a}_{n}}$.求數(shù)列{bn}前n項和為Tn

分析 (1)由2,an,Sn成等差數(shù)列,可得2an=2+Sn,再利用遞推式、等比數(shù)列的通項公式即可得出;
(2)利用“錯位相減法”、等比數(shù)列的前n項和公式即可得出.

解答 解:(1)∵2,an,Sn成等差數(shù)列,
∴2an=2+Sn,當(dāng)n=1時,2a1=2+a1,解得a1=2.
當(dāng)n≥2時,2an-1=2+Sn-1,
∴2an-2an-1=an,∴an=2an-1,
∴數(shù)列{an}是等比數(shù)列,首項為2,公比為2,∴an=2n
(2)bn=$\frac{log{{\;}_{2}a}_{n}}{{a}_{n}}$=$\frac{lo{g}_{2}{2}^{n}}{{2}^{n}}$=$\frac{n}{{2}^{n}}$.
∴數(shù)列{bn}前n項和為Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=1-$\frac{2+n}{{2}^{n+1}}$,
∴Tn=2-$\frac{2+n}{{2}^{n}}$.

點評 本題考查了遞推式、等比數(shù)列的通項公式及其前n項和公式、“錯位相減法”、對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.點C在線段AB上,且|$\overrightarrow{AC}$|=$\frac{5}{2}$|$\overrightarrow{CB}$|,則$\overrightarrow{BC}$=k$\overrightarrow{AB}$,則k的值是( 。
A.$\frac{5}{7}$B.-$\frac{5}{7}$C.-$\frac{2}{7}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.變量x,y的散點圖如圖所示,那么x,y之間的樣本相關(guān)系數(shù)r最接近的值為(  )
A.1B.-0.5C.0D.0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線L:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$與曲線C:$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$相交于A,B兩點,點F的坐標(biāo)為(1,0).
(1)求△ABF的周長;
(2)若點E(-1,0)恰為線段AB的三等分點,求三角形ABF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,三個內(nèi)角A、B、C的對邊分別為a、b、c,已知a=3,b=4,面積S=3$\sqrt{3}$,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.橢圓E:$\frac{x^2}{5}$+$\frac{y^2}{4}$=1的右焦點F,直線l與曲線x2+y2=4(x>0)相切,且交橢圓E于A,B兩點,記△FAB的周長為m,則實數(shù)m的所有可能取值所成的集合為{2$\sqrt{5}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的四個頂點按逆時針排列順序依次為A,B,C,D,若四邊形ABCD的內(nèi)切圓恰好過焦點,則橢圓的離心率e2為( 。
A.$\frac{{3-\sqrt{5}}}{2}$B.$\frac{{3+\sqrt{5}}}{8}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\frac{{1+\sqrt{5}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a>b>0,橢圓C1的方程為$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1,雙曲線C2的方程為$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,C1與C2的離心率之積為$\frac{{\sqrt{3}}}{2}$,則C2的漸近線方程為( 。
A.$\sqrt{2}$x±y=0B.x±$\sqrt{2}$y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知橢圓的長軸長是短軸長的2倍,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案