1.求值
(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)已知sin(3π+θ)=$\frac{1}{4}$,求$\frac{cos(π+θ)}{cosθ•[cos(π+θ)-1]}$+$\frac{cos(θ-2π)}{cos(θ+2π)•cos(θ+π)+cos(-θ)}$的值.

分析 (1)運(yùn)用誘導(dǎo)公式及特殊角的三角函數(shù)值即可化簡(jiǎn)求值.
(2)利用誘導(dǎo)公式及已知可得sin$θ=-\frac{1}{4}$,利用誘導(dǎo)公式及同角三角函數(shù)關(guān)系式化簡(jiǎn)所求后,代入即可求值.

解答 解:(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
=sin260°-1+1-cos230°+sin30°
=$\frac{3}{4}$-$\frac{3}{4}$+$\frac{1}{2}$
=$\frac{1}{2}$.
(2)∵sin(3π+θ)=$\frac{1}{4}$,∴sin$θ=-\frac{1}{4}$,
∴$\frac{cos(π+θ)}{cosθ•[cos(π+θ)-1]}$+$\frac{cos(θ-2π)}{cos(θ+2π)•cos(θ+π)+cos(-θ)}$
=$\frac{-cosθ}{cosθ•(-cosθ-1)}$+$\frac{cosθ}{cosθ•(-cosθ)+cosθ}$
=$\frac{1}{1+cosθ}$+$\frac{1}{1-cosθ}$
=$\frac{2}{(1+cosθ)•(1-cosθ)}$
=$\frac{2}{1-co{s}^{2}θ}$
=$\frac{2}{si{n}^{2}θ}$
=$\frac{2}{(-\frac{1}{4})^{2}}$
=32.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)關(guān)系式及特殊角的三角函數(shù)值在化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,AC=1,BC=2$\sqrt{3}$,C=$\frac{π}{6}$,如果不等式|$\overrightarrow{BA}$-t$\overrightarrow{BC}$|≤|$\overrightarrow{AC}$|恒成立,則實(shí)數(shù)t的取值范圍是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線(xiàn)斜率為2,求函數(shù)f(x)的圖象在(1,f(1))的切線(xiàn)方程;
(2)若函數(shù)g(x)=$\frac{2}{x}$+f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.解方程組:$\left\{\begin{array}{l}{3(x+y)-4(x-y)=4}\\{\frac{x+y}{2}+\frac{x-y}{6}=1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知向量$\overrightarrow a=(t,0,-1),\overrightarrow b=(2,5,{t^2})$,若$\overrightarrow a⊥\overrightarrow b$,則t=0或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下面使用類(lèi)比推理正確的是( 。
A.直線(xiàn)a,b,c,若a∥b,b∥c,則a∥c.類(lèi)推出:向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,若$\overrightarrow{a}$∥$\overrightarrow$ $\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$.
B.同一平面內(nèi),直線(xiàn)a,b,c,若a丄c,b丄c,則a∥b.類(lèi)推出:空間中,直線(xiàn)a,b,c,若a丄c,b丄c,則a∥b.
C.若a,b∈R,則a-b>0⇒a>b類(lèi)推出:若a,b∈C,則a-b>0⇒a>b
D.以點(diǎn)(0,0)為圓心,r為半徑的圓的方程為x2+y2=r2.類(lèi)推出:以點(diǎn)(0,0,0)為球心,r為半徑的球的方程為x2+y2+z2=r2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在計(jì)算機(jī)語(yǔ)言中有一種函數(shù)y=int(x)叫做取整函數(shù)(也叫高斯函數(shù)),它表示不超過(guò)x的最大整數(shù),如int(0.9)=0,int(3.14)=3,已知$\frac{1}{7}$=0.$\stackrel{•}{1}$$\stackrel{•}{4}$$\stackrel{•}{2}$$\stackrel{•}{8}$$\stackrel{•}{5}$$\stackrel{•}{7}$,令an=int($\frac{1{0}^{n}}{7}$),b1=a1,令當(dāng)n>1時(shí),bn=an-10an-1(n∈N*),則當(dāng)n>1時(shí),則b2014=(  )
A.2009B.8C.2010D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=2sin(ωx)(ω>0)的最小正周期為$\frac{π}{2}$,則ω=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2),B(2,3).
(1)求向量$\overrightarrow{AB}$;
(2)若向量$\overrightarrow{a}∥\overrightarrow{AB}$,且$\overrightarrow{a}$=(1,k),求k.

查看答案和解析>>

同步練習(xí)冊(cè)答案