5.在極坐標(biāo)系中.點(diǎn)A(1,$\frac{π}{3}$),B(2,$\frac{π}{3}$).動點(diǎn)P滿足PA=$\frac{1}{2}$PB.則動點(diǎn)P軌跡的極坐標(biāo)方程為ρ=$\frac{2}{3}$cosθ+$\frac{2\sqrt{3}}{3}$sinθ.

分析 求出A($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),B(1,$\sqrt{3}$),利用動點(diǎn)P滿足PA=$\frac{1}{2}$PB,直接計(jì)算,即可求出點(diǎn)P的軌跡方程.

解答 解:∵A(1,$\frac{π}{3}$),B(2,$\frac{π}{3}$),
∴A($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),B(1,$\sqrt{3}$)
設(shè)P(x,y),則
∵PA=$\frac{1}{2}$PB,
∴(x-$\frac{1}{2}$)2+(y-$\frac{\sqrt{3}}{2}$)2=$\frac{1}{4}$(x-1)2+$\frac{1}{4}$(y-$\sqrt{3}$)2,
∴x2+y2-$\frac{2}{3}$x-$\frac{2\sqrt{3}}{3}$y=0.
極坐標(biāo)方程為ρ=$\frac{2}{3}$cosθ+$\frac{2\sqrt{3}}{3}$sinθ.
故答案為:ρ=$\frac{2}{3}$cosθ+$\frac{2\sqrt{3}}{3}$sinθ.

點(diǎn)評 本題考查點(diǎn)P的軌跡方程,考查直接法的運(yùn)用,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在邊長為1的正三角形ABC中,設(shè)$\overrightarrow{BC}$=3$\overrightarrow{BD}$,求$\overrightarrow{AD}$•$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.平面上有兩定點(diǎn)A、B和動點(diǎn)P,|PA|=2|PB|,則動點(diǎn)P的軌跡為( 。
A.橢圓B.C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.[B]已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足2Sn=4an+(n-4)(n+1)(n∈N+).
(1)計(jì)算a1,a2,a3,根據(jù)計(jì)算結(jié)果,猜想an的表達(dá)式(不必證明);
(2)用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)通過計(jì)算可得下列等式:
23-13=3×12+3×1+1;
33-23=3×22+3×2+1;
43-33=3×32+3×3+1;

(n+1)3-n3=3×n2+3×n+1;
將以上各等式兩邊分別相加,得
(n+1)3-13=3(12+22+32+…+n2)+3(1+2+3+…+n)+n,
即:12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1)
類比上述求法,試求出13+23+33+…+n3的值.
(2)用數(shù)學(xué)歸納法證明第(1)問所得結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={0,$\frac{π}{6$,$\frac{π}{4}$,$\frac{π}{3}$,$\frac{π}{2}$,$\frac{2π}{3}$,$\frac{3π}{4}$,$\frac{5π}{6}$,π}.現(xiàn)從集合A中隨機(jī)選取一個(gè)元素,則該元素的
余弦值為正數(shù)的概率為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=$\frac{{{x^2}({e^x}+m)}}{{{e^x}-1}}$(e為自然對數(shù)的底數(shù))是奇函數(shù),則實(shí)數(shù)m的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如果x是實(shí)數(shù),且x>-1,x≠0,n為大于1的自然數(shù),用數(shù)學(xué)歸納法證明:(1+x)n>1+nx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中φ∈(0,$\frac{π}{2}$),則函數(shù)g(x)=cos(2x-φ)的圖象( 。
A.關(guān)于點(diǎn)($\frac{π}{12}$,0)對稱
B.可由函數(shù)f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位得到
C.可由函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位得到
D.可由函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個(gè)單位得到

查看答案和解析>>

同步練習(xí)冊答案