分析 (1)令x=1,y=0,得出f(1)=f(1)•f(0 ),再結(jié)合當(dāng)x>0時,f(x)>1.得出f(0)=1;
(2)設(shè)x1<x2,由已知得出f(x2)=f(x1+(x2-x1))=f(x1)f(x2-x1)>f(x1),即可判斷出函數(shù)f(x)在R上單調(diào)遞增;
(3)由(2),不等式化為x2-x<4x-6,解不等式即可.
解答 解:(1)令x=1,y=0則f(1)=f(1+0)=f(1)f(0),
∵f(1)≠0,
∴f(0)=1;
(2)證明:當(dāng)x<0時-x>0,
由f(x)f(-x)=f(x-x)=f(0)=1,f(-x)>0得f(x)>0,
∴對于任意實數(shù)x,f(x)>0,
設(shè)x1<x2則x2-x1>0,f(x2-x1)>1,
∵f(x2)=f(x1+(x2-x1))=f(x1)f(x2-x1)>f(x1),
∴函數(shù)y=f(x)在(-∞,+∞)上是增函數(shù),;
(3)∵$\frac{1}{f(6-4x)}$=$\frac{f(0)}{f(6-4x)}$=f(4x-6)
∴f(x2-x)<f(4x-6),
由(2)可得:x2-x<4x-6,解得2<x<3,
所以原不等式的解集是(2,3).
點評 本題考查抽象函數(shù)求函數(shù)值、單調(diào)性的判定、及單調(diào)性的應(yīng)用,考查轉(zhuǎn)化、牢牢把握所給的關(guān)系式,對式子中的字母準(zhǔn)確靈活的賦值,變形構(gòu)造是解決抽象函數(shù)問題常用的思路.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-2y+1=0 | B. | 2x+y-2=0 | C. | x-2y-2=0 | D. | x+2y-2=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com