7.某學(xué)校從高三年級(jí)共800名男生中隨機(jī)抽取50名測(cè)量身高.據(jù)測(cè)量被測(cè)學(xué)生身高全部介于155cm和195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160)、第二組[160,165)、…、第八組[190,195].按上述分組方式得到的頻率分布直方圖的一部分如圖所示,估計(jì)這所學(xué)校高三年級(jí)全體男生身高180cm以上(含180cm)的人數(shù)為144.

分析 根據(jù)頻率和為1,求出男生身高在180cm以上(含180cm)的頻率和頻數(shù).

解答 解:根據(jù)頻率分布直方圖,得;
男生身高在180cm以上(含180cm)的頻率為
1-(0.008+0.016+0.04+0.04+0.06)×5=0.18;
對(duì)應(yīng)的人數(shù)有800×0.18=144.
故答案為:144.

點(diǎn)評(píng) 本題考查了頻率分布直方圖的應(yīng)用問(wèn)題,也考查了頻率=$\frac{頻數(shù)}{樣本人類}$的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列大小關(guān)系正確的是( 。
A.log40.3<0.43<30.4B.0.43<30.4<log40.3
C.0.43<log40.3<0.30.4D.log40.3<0.30.4<0.43

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知$f(α)=\frac{{sin(π-α)•cos(2π-α)•sin(\frac{3π}{2}-α)}}{{cos(-π-α)•cos(\frac{π}{2}+α)}}$,則f(-$\frac{31}{3}$π)的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.?dāng)?shù)列{an}的前n項(xiàng)和Sn滿足1g(Sn+1)=n+1,則通項(xiàng)an=${a}_{n}=\left\{\begin{array}{l}{99,n=1}\\{9×1{0}^{n},n≥2,n∈{N}^{*}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,$\overrightarrow{x}$=(a+c,c-b),$\overrightarrow{y}$=(sinA,sinB+sinC),且$\overrightarrow{x}$•$\overrightarrow{y}$=0,
(′1)求向量$\overrightarrow{AB}$和$\overrightarrow{BC}$的夾角θ;
(2)若a+c=2$\sqrt{3}$,求b取得最小值時(shí),AC邊上的高h(yuǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知a>b>1且2logab+3logba=7,則$a+\frac{1}{{{b^2}-1}}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知點(diǎn)列Pn(an,bn)在直線l:y=2x+1上,P1為直線l與y軸的交點(diǎn),等差數(shù)列{an}的公差為1,(n∈N+
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若數(shù)列{Cn}滿足Cn=$\frac{1}{n•|{P}_{1}{P}_{n}|}$(n≥2),求$\underset{lim}{n→∞}$(C2+C3+…+Cn).
(3)若dn=2dn-1+an+1(n≥2)且d1=1,求{dn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=lnx-$\frac{1}{x}$,則f′(-$\frac{1}{2}$)=(  )
A.6B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)U=R,集合A={-2,-1},B={x|x2+(m+1)x+m=0}且(∁UA)∩B=∅,則m=1或2.

查看答案和解析>>

同步練習(xí)冊(cè)答案