8.某小組有A、B、C、D、E、F六位同學(xué),其中A、B、C、D四位同學(xué)成績較好,E、F兩位同學(xué)成績較弱.
(1)某次活動上,決定由兩位成績較好的同學(xué)和一位成績較差的同學(xué)組隊參加,則A和B不都去參加的概率;
(2)一次學(xué)習(xí)競賽中,規(guī)定每小組先通過抽簽方式將6人排序,并按順序依次出場參賽,每次出場1人,解答一個問題,已知4位成績較好的同學(xué)可以解答出任意一個題目,而成績較弱的同學(xué)無法完整解答出每一個題目,一旦出現(xiàn)解答不完整情況,該組答題即停止,用X代表該組出場參賽的人數(shù),求X的分布列和數(shù)學(xué)期望EX.

分析 (1)先求出基本事件總數(shù)n=${C}_{4}^{2}{C}_{2}^{1}$,A和B不都去參加的對立事件是A和B都去參加,由此利用對立事件概率計算公式能求出A和B不都去參加的概率.
(2)由已知得X的可能取值為0,1,2,3,4,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).

解答 解:(1)∵某小組有A、B、C、D、E、F六位同學(xué),其中A、B、C、D四位同學(xué)成績較好,E、F兩位同學(xué)成績較弱.
某次活動上,決定由兩位成績較好的同學(xué)和一位成績較差的同學(xué)組隊參加,
基本事件總數(shù)n=${C}_{4}^{2}{C}_{2}^{1}$=12,
A和B不都去參加的對立事件是A和B都去參加,
∴A和B不都去參加的概率P=1-$\frac{{C}_{2}^{2}{C}_{2}^{1}}{{C}_{4}^{2}{C}_{2}^{1}}$=1-$\frac{2}{12}$=$\frac{5}{6}$.
(2)由已知得X的可能取值為1,2,3,4,
P(X=1)=$\frac{2}{6}$=$\frac{1}{3}$,
P(X=2)=$\frac{4}{6}×\frac{2}{5}$=$\frac{4}{15}$,
P(X=3)=$\frac{4}{6}×\frac{3}{5}×\frac{2}{4}$=$\frac{1}{5}$,
P(X=4)=$\frac{4}{6}×\frac{3}{5}×\frac{2}{4}×\frac{2}{3}$=$\frac{2}{15}$,
P(X=5)=$\frac{4}{6}×\frac{3}{5}×\frac{2}{4}×\frac{1}{3}×\frac{2}{2}$=$\frac{1}{15}$,
∴X的分布列為:

 X12345
 P $\frac{1}{3}$ $\frac{4}{15}$ $\frac{1}{5}$ $\frac{2}{15}$ $\frac{1}{15}$
E(X)=$1×\frac{1}{3}+2×\frac{4}{15}+3×\frac{1}{5}+4×\frac{2}{15}$+5×$\frac{1}{15}$=$\frac{7}{3}$.

點評 本題考查概率的求法,是中檔題,解題時要認真審題,注意對立事件概率計算公式和相互獨立事件概率乘法公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x3+ax2+(a+1)x是奇函數(shù),則曲線y=f(x)在x=0處的切線方程為(  )
A.y=xB.y=x+1C.y=1D.y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<$\frac{π}{2}}$) 的部分圖象 如圖所示,其最小正周期為π;如果x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}}$),且f(x1)=f(x2),則f(x1+x2)=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.采用系統(tǒng)抽樣方法從960人中抽取32人做問卷調(diào)查,為此將他們隨即編號為1,2…960,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為5,抽到的32人中,編號落入?yún)^(qū)間[1,450]的人做問卷A,編號落入?yún)^(qū)間[451,750]的人做問卷B,其余的人做問卷C,則抽到的32人中,做問卷C的人數(shù)為(  )
A.15B.10C.9D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知角α的終邊經(jīng)過點(-3,4),則sin2α的值為(  )
A.-$\frac{7}{25}$B.-$\frac{18}{25}$C.-$\frac{12}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“k=-1”是“直線l:y=kx+2k-1在坐標(biāo)軸上截距相等”的( 。
A.充分必要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.f(x)=ln(x+$\sqrt{{x^2}+1}}$),若實數(shù)a,b滿足f(a)+f(b-1)=0,則a+b為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某同學(xué)用“五點法”畫函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}}$)在某一個周期內(nèi)的圖象時,列表如下:
x$\frac{2}{3}$πx1$\frac{8}{3}$πx2x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-20
(1)求函數(shù)f(x)的表達式;
(2)將函數(shù)f(x)的圖象向左平移π個單位,可得到函數(shù)g(x)的圖象,且函數(shù)y=f(x)•g(x)在區(qū)間(0,m)上是單調(diào)函數(shù),求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在邊長為10(單位:m)的正方形鐵皮的四周切去四個全等的等腰三角形,再把它的四個角沿著虛線折起,做成一個正四棱錐的模型.設(shè)切去的等腰三角形的高為x m.問正四棱錐的體積V(x)何時最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案