A. | $\frac{2}{5}\sqrt{6}$ | B. | $\frac{3}{5}\sqrt{6}$ | C. | $\frac{4}{5}\sqrt{6}$ | D. | $\sqrt{6}$ |
分析 求出圓C圓心C(3,2),半徑r=1,再求出圓心C(3,2)到直線y=$\frac{3}{4}$x的距離d,由此利用勾股定理能求出|PQ|的長(zhǎng).
解答 解:∵圓C:(x-3)2+(y-2)2=1的圓心C(3,2),半徑r=1,
圓心C(3,2)到直線y=$\frac{3}{4}$x的距離d=$\frac{|\frac{3}{4}×3-2|}{\sqrt{\frac{9}{16}+1}}$=$\frac{1}{5}$,
∵圓C:(x-3)2+(y-2)2=1(a>0)與直線y=$\frac{3}{4}$x相交于P、Q兩點(diǎn),
∴|PQ|=2$\sqrt{{r}^{2}-l1dwnfr^{2}}$=2$\sqrt{1-\frac{1}{25}}$=$\frac{4\sqrt{6}}{5}$.
故選:C.
點(diǎn)評(píng) 本題考查弦長(zhǎng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)和點(diǎn)到直線的距離公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±$\sqrt{3}$ | B. | ±$\frac{\sqrt{3}}{3}$ | C. | ±1 | D. | ±$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com