6.若函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)(ω>0),滿足f(0)=f($\frac{π}{3}$),且函數(shù)在[0,$\frac{π}{2}$]上有且只有一個零點(diǎn),則f(x)的最小正周期為( 。
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

分析 根據(jù)f(0)=f($\frac{π}{3}$),得出函數(shù)f(x)的一條對稱軸x=$\frac{π}{6}$;再根據(jù)題意得出$\frac{π}{6}$-0≤$\frac{T}{4}$≤$\frac{π}{2}$-$\frac{π}{6}$,結(jié)合題目中的選項(xiàng)求出f(x)的最小正周期.

解答 解:∵函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)(ω>0),滿足f(0)=f($\frac{π}{3}$),
∴x=$\frac{0+\frac{π}{3}}{2}$=$\frac{π}{6}$是函數(shù)f(x)的一條對稱軸;
又函數(shù)f(x)在[0,$\frac{π}{2}$]上有且只有一個零點(diǎn),
∴$\frac{π}{6}$-0≤$\frac{T}{4}$≤$\frac{π}{2}$-$\frac{π}{6}$,
即$\frac{2π}{3}$≤T≤$\frac{4π}{3}$,
結(jié)合題目中的選項(xiàng),得:
f(x)的最小正周期為T=π.
故選:B.

點(diǎn)評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了函數(shù)的零點(diǎn)、對稱軸與周期的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,?a∈R,都有f(a)+f(-a)=1成立的是( 。
A.f(x)=ln$\sqrt{1+{x}^{2}}$B.f(x)=cos2(x-$\frac{π}{4}$)C.f(x)=$\frac{(x-1)^{2}}{1+{x}^{2}}$D.f(x)=$\frac{{2}^{x}}{{2}^{x}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x||x|≤2},B={x|x2-3x≤0,x∈N},則A∩B=(  )
A.{0,4}B.{-2,-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C所對應(yīng)的邊分別是a,b,c,向量$\overrightarrow{m}$=(a-c,b+c),$\overrightarrow{n}$=(b-c,a),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求B;
(2)若b=$\sqrt{13}$,cos(A+$\frac{π}{6}$)=$\frac{3\sqrt{39}}{26}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.(理)已知${({x+1})^{10}}={a_1}+{a_2}x+{a_3}{x^2}+…+{a_{11}}{x^{10}}$.若數(shù)列a1,a2,a3,…,ak(1≤k≤11,k∈Z)是一個單調(diào)遞增數(shù)列,則k的最大值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中,滿足f(-x)+f(x)=0的單調(diào)遞增函數(shù)是( 。
A.f(x)=x3B.f(x)=-x-1C.f(x)=log2xD.f(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=log34,b=logπ3,c=50.5,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在斜三棱柱ABC-A1B1C1中,AB=BC=1,AA1=2,D是AC的中點(diǎn),AB⊥平面B1C1CB,∠BCC1=60°.
(1)求證:AC⊥平面BDC1
(2)求二面角B1-BC1-A1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x,y滿足$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$,目標(biāo)函數(shù)z=1-2x-y的最大值為a,最小值為b,則a-b=( 。
A.10B.12C.14D.16

查看答案和解析>>

同步練習(xí)冊答案