分析 巧換元,設(shè)令2x=t,得到不等式(t-a)2>1恒成立,解得t>a+1或t<a-1,即可得到a的取值范圍.
解答 解:令2x=t,∵x∈[1,2],
∴t∈[2,4],
∴t2-2at+a2-1>0,t∈[2,4]恒成立,
即有(t-a)2>1,
解得t>a+1或t<a-1,
由t∈[2,4],則a+1<2,即a<1,
a-1>4即a>5.
則實(shí)數(shù)a的取值范圍是(-∞,1)∪(5,+∞).
故答案為:(-∞,1)∪(5,+∞).
點(diǎn)評(píng) 考查學(xué)生理解掌握不等式恒成立的條件,注意化簡(jiǎn)轉(zhuǎn)化為求函數(shù)的最值問題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m⊥α,m⊥β,則α∥β | B. | 若m⊥α,n⊥α,則m∥n | C. | 若α∥γ,β∥γ,則α∥β | D. | 若α⊥γ,β⊥γ,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | 3 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f({-\frac{1}{2}})<f({\frac{3}{4}})<f({\frac{2}{3}})$ | B. | $f({-\frac{1}{2}})<f({\frac{2}{3}})<f({\frac{3}{4}})$ | C. | $f({\frac{3}{4}})<f({\frac{2}{3}})<f({-\frac{1}{2}})$ | D. | $f({\frac{2}{3}})<f({-\frac{1}{2}})<f({\frac{3}{4}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
a1,1 | a1,2 | a1,3 | a1,4 | … |
a2,1 | a2,2 | a2,3 | a2,4 | … |
a3,1 | a3,2 | a3,3 | a3,4 | … |
a4,1 | a4,2 | a4,3 | a4,4 | … |
… | … | … | … | … |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com