A. | 36 | B. | 28 | C. | 26 | D. | 18 |
分析 如圖所示利用線面垂直的性質(zhì)定理可得:PA⊥AC,PA⊥AB,又PC⊥AB,可得AB⊥平面PAC,AB⊥AC.設AP=x,AB=y,AC=z,可得x2+y2+z2=36.S=$\frac{1}{2}$yz+$\frac{1}{2}$xy+$\frac{1}{2}$xz,利用重要不等式即可得出.
解答 解:如圖所示,
∵PA⊥面ABC,∴PA⊥AC,PA⊥AB,
又PC⊥AB,PA∩PC=P,
∴AB⊥平面PAC,
∴AB⊥AC.
設AP=x,AB=y,AC=z,
則x2+y2+z2=(2×3)2=36.
S=S△ABC+S△ABP+S△ACP=$\frac{1}{2}$yz+$\frac{1}{2}$xy+$\frac{1}{2}$xz≤$\frac{1}{2}×$(x2+y2+z2)=18,
當且僅當x=y=z=2$\sqrt{3}$設取等號.
則S的最大值是18.
故選:D.
點評 本題考查了線面垂直的判定與性質(zhì)定理、直角三角形面積計算公式、重要不等式的性質(zhì),考查了數(shù)形結(jié)合方法、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>0 | B. | a≤1 | C. | a>1 | D. | a≤0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com