分析 由題意畫出圖形,結(jié)合$\frac{y+\sqrt{3}}{x-1}$的幾何意義,即定點M(1,-$\sqrt{3}$)與圓$(x+1)^{2}+(y-\sqrt{3})^{2}=4$上的動點連線的斜率求得答案.
解答 解:由x2+y2+2x-2$\sqrt{3}$y=0,得$(x+1)^{2}+(y-\sqrt{3})^{2}=4$,
作出圖象如圖,
$\frac{y+\sqrt{3}}{x-1}$的幾何意義為定點M(1,-$\sqrt{3}$)與圓$(x+1)^{2}+(y-\sqrt{3})^{2}=4$上的動點連線的斜率,
當切線斜率不存在時,切線方程為x=1;
當切線斜率存在時,設(shè)過M的圓的切線方程為y+$\sqrt{3}=k(x-1)$,即kx-y-k-$\sqrt{3}=0$.
由$\frac{|-k-\sqrt{3}-k-\sqrt{3}|}{\sqrt{{k}^{2}+1}}=2$,解得:k=-$\frac{\sqrt{3}}{3}$.
∴$\frac{y+\sqrt{3}}{x-1}$的最大值是$-\frac{\sqrt{3}}{3}$.
故答案為:$-\frac{\sqrt{3}}{3}$.
點評 本題考查簡單的線性規(guī)劃,考查了切線方程的求法,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | HL | B. | AAS | C. | SSS | D. | ASA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 36 | B. | 28 | C. | 26 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 0 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com