分析 (1)由an+1=Sn+1-Sn=2an+1-2an+1,能證明{an-1}是以-2為首項,2為公比的等比數(shù)列.
(2)由$_{n}=n•{2}^{n}$,利用錯位相減法能求出數(shù)列{bn}的前n項和Tn.
解答 證明:(1)∵數(shù)列{an}的前n項和為Sn,Sn=2an+n,
∴Sn+1=2an+1+n+1,
∴an+1=Sn+1-Sn=2an+1-2an+1,
∴an+1=2an-1,
∴an+1-1=2(an-1),
∴{an-1}是以-2為首項,2為公比的等比數(shù)列.
解:(2)由(1)得${a}_{n}-1=-2×{2}^{n-1}=-{2}^{n}$,即${a}_{n}=-{2}^{n}+1$,
∵bn=n(1-an),∴$_{n}=n•{2}^{n}$,
∴Tn=1•2+2•22+…+n•2n,①
2Tn=1•22+2•23+…+n•2n+1,②
①-②,得:-Tn=2+22+…+2n-n•2n+1
=$\frac{2({2}^{n}-1)}{2-1}-n•{2}^{n+1}$
=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.
點評 本題考查等比數(shù)列的證明,考查數(shù)列的前n項和的求法,是中檔題,解題時要認真審題,注意錯位相減法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{8}{5}$ | D. | $\frac{9}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1] | B. | (-∞,1) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com