11.已知一個底面是菱形的直棱柱的側(cè)棱長為5,菱形的對角線的長分別是9和15,則這個棱柱的側(cè)面積是(  )
A.30$\sqrt{34}$B.60$\sqrt{34}$C.30$\sqrt{34}$+135D.135

分析 由菱形的對角線的長分別是9和15,先求出菱形的邊長,再由底面是菱形的直棱柱的側(cè)棱長為5,能求出這個棱柱的側(cè)面積.

解答 解:∵菱形的對角線的長分別是9和15,
∴菱形的邊長為:$\sqrt{(\frac{9}{2})^{2}+(\frac{15}{2})^{2}}$=$\frac{3\sqrt{34}}{2}$,
∵底面是菱形的直棱柱的側(cè)棱長為5,
∴這個棱柱的側(cè)面積S=4×$\frac{3\sqrt{34}}{2}$×5=30$\sqrt{34}$.
故選:A.

點(diǎn)評 本題考查棱柱的側(cè)面積的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意菱形的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,如果輸入m=30,n=18,則輸出的m的值為(  )
A.0B.6C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓柱OO1底面半徑為1,高為π,ABCD是圓柱的一個軸截面.動點(diǎn)M從點(diǎn)B出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn)D,其距離最短時在側(cè)面留下的曲線Γ如圖所示.現(xiàn)將軸截面ABCD繞著軸OO1逆時針旋轉(zhuǎn)θ(0<θ≤π)后,邊B1C1與曲線Γ相交于點(diǎn)P,設(shè)BP的長度為f(θ),則y=f(θ)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正方體ABCD-A1B1C1D1,底面ABCD的中心為O,E為BC的中點(diǎn),如圖
  (1)求證:B1O∥平面A1C1D; 
  (2)求證:BD1∥平面C1DE; 
  (3)求證:平面A1C1D∥平面B1CO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)在(0,+∞)上是增函數(shù),且$a=f(\sqrt{2})$,$b=f({\frac{π}{2}})$,則a、b的大小關(guān)系是a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點(diǎn)與短軸的兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)和長軸上較近的端點(diǎn)距離為4$\sqrt{3}$-2$\sqrt{6}$,則此橢圓方程為$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{24}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法不正確的是(  )
A.如果一條直線上有兩個點(diǎn)在一個平面內(nèi),則直線在平面內(nèi)
B.經(jīng)過兩條相交直線有且只有一個平面
C.不共線的三個點(diǎn)可以確定一個平面
D.兩個平面可以相交于一個點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知等比數(shù)列的首項為a1公比為q,則其通項公式為${a}_{n}={a}_{1}{q}^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.有些航空母艦上裝有幫助飛機(jī)起飛的彈射系統(tǒng),一已知某型號的戰(zhàn)斗機(jī)在跑道上加速時可能產(chǎn)生的最大加速度為5.0m/s2,當(dāng)飛機(jī)的速度達(dá)到50m/s時才能離開航空母艦起飛,設(shè)航空母艦處于靜止?fàn)顟B(tài).問:
(1)若要求該飛機(jī)滑行160m后起飛,彈射系統(tǒng)必須使飛機(jī)具有多大的初速度?
(2)若某艦上不裝彈射系統(tǒng),要求該種飛機(jī)仍能此艦上正常起飛,問該艦身長至少應(yīng)為多長?
(3)若航空母艦上不裝彈射系統(tǒng),設(shè)航空母艦甲板長為L=160m,為使飛機(jī)仍能從此艦上正常起飛,這時可以先讓航空母艦沿飛機(jī)起飛方向以某一速度勻速航行,則這個速度至少為多少?

查看答案和解析>>

同步練習(xí)冊答案