1.執(zhí)行如圖所示的程序框圖,如果輸入m=30,n=18,則輸出的m的值為( 。
A.0B.6C.12D.18

分析 由已知中的程序語(yǔ)句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量m的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:如果輸入m=30,n=18,
第一次執(zhí)行循環(huán)體后,r=12,m=18,n=12,不滿(mǎn)足輸出條件;
第二次執(zhí)行循環(huán)體后,r=6,m=12,n=6,不滿(mǎn)足輸出條件;
第三次執(zhí)行循環(huán)體后,r=0,m=6,n=0,滿(mǎn)足輸出條件;
故輸出的m值為6,
故選:B

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,以便得出正確的結(jié)論,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知全集U=R,A={x|-2<x<2},B={x|x<-1或x>4},
(1)求A∩B
(2)求∁UB
(3)A∪(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求下列雙曲線的標(biāo)準(zhǔn)方程
(1)與雙曲線$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}=1$有公共焦點(diǎn),且過(guò)點(diǎn)(6$\sqrt{2}$,$\sqrt{6}$)的雙曲線
(2)以橢圓3x2+13y2=39的焦點(diǎn)為焦點(diǎn),以直線y=±$\frac{x}{2}$為漸近線的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知tan α=2,則$\frac{sin2α+cos2(π-α)}{1+cos2α}$的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)定義域?yàn)镽,則下列命題:
①若y=f(x)為偶函數(shù),則y=f(x+2)的圖象關(guān)于y軸對(duì)稱(chēng).
②若y=f(x+2)為偶函數(shù),則y=f(x)關(guān)于直線x=2對(duì)稱(chēng).
③若函數(shù)y=f(2x+1)是偶函數(shù),則y=f(2x)的圖象關(guān)于直線$x=\frac{1}{2}$對(duì)稱(chēng).
④若f(x-2)=f(2-x),則則y=f(x)關(guān)于直線x=2對(duì)稱(chēng).
⑤函數(shù)y=f(x-2)和y=f(2-x)的圖象關(guān)于x=2對(duì)稱(chēng).
其中正確的命題序號(hào)是( 。
A.①②④B.①③④C.②③⑤D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為120°,$\overrightarrow{OC}$與$\overrightarrow{OA}$的夾角為30°,|$\overrightarrow{OC}$|=5,則$\overrightarrow{OC}$=$\frac{10\sqrt{3}}{3}$$\overrightarrow{OA}$+$\frac{5\sqrt{3}}{3}$$\overrightarrow{OB}$.(用$\overrightarrow{OA}和\overrightarrow{OB}$表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩焦點(diǎn),以點(diǎn)F1為直角頂點(diǎn)作等腰直角三角形MF1F2,若邊MF1的中點(diǎn)在雙曲線上,則雙曲線的離心率是( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{5}-1$C.$\sqrt{5}+1$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)集合M={x|y=$\sqrt{2-x}$+2},N={y|y=$\sqrt{2-x}$+2},則A∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知一個(gè)底面是菱形的直棱柱的側(cè)棱長(zhǎng)為5,菱形的對(duì)角線的長(zhǎng)分別是9和15,則這個(gè)棱柱的側(cè)面積是( 。
A.30$\sqrt{34}$B.60$\sqrt{34}$C.30$\sqrt{34}$+135D.135

查看答案和解析>>

同步練習(xí)冊(cè)答案