6.已知點(diǎn)A(2,1),P是焦點(diǎn)為F的拋物線y2=4x上的任一點(diǎn),當(dāng)△PAF的周長(zhǎng)最小時(shí),△PAF的面積為( 。
A.2B.$\frac{1}{2}$C.$\frac{7}{8}$D.$\frac{7}{4}$

分析 設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|進(jìn)而把問(wèn)題轉(zhuǎn)化為求|PA|+|PD|取得最小,推斷出當(dāng)D,P,A三點(diǎn)共線時(shí)|PA|+|PD|最小,求出P的坐標(biāo),可得△PAF的面積.

解答 解:設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|
∴△APF的周長(zhǎng)最小,|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小
當(dāng)D,P,A三點(diǎn)共線時(shí)|PA|+|PD|最小,設(shè)P(x,1),則1=4x,
∴x=$\frac{1}{4}$,
∴P($\frac{1}{4}$,1).
∴△PAF的面積為$\frac{1}{2}×(2-\frac{1}{4})×1$=$\frac{7}{8}$,
故選:C.

點(diǎn)評(píng) 本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,屬于中檔題,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩個(gè)焦點(diǎn)F1,F(xiàn)2,過(guò)其中兩個(gè)端點(diǎn)的直線斜率為$\frac{\sqrt{2}}{2}$,過(guò)兩個(gè)焦點(diǎn)和一個(gè)頂點(diǎn)的三角形面積為1.
(1)求橢圓的方程;
(2)如圖,點(diǎn)A為橢圓上一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),AF1的延長(zhǎng)線與橢圓交于B點(diǎn),AO的延長(zhǎng)線與橢圓交于C點(diǎn),求△ABC面積的最大值,并求此時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.?dāng)?shù)列{an}中,定義:dn=an+2+an-2an+1(n≥1),a1=1.
(Ⅰ)若dn=an,a2=2,求an
(Ⅱ) 若a2=-2,dn≥1,求證此數(shù)列滿足an≥-5(n∈N*);
(Ⅲ)若|dn|=1,a2=1且數(shù)列{an}的周期為4,即an+4=an(n≥1),寫(xiě)出所有符合條件的{dn}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)計(jì)算2lg5+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2的值
(2)計(jì)算4${a^{\frac{2}{3}}}$${b^{-\frac{1}{3}}}$÷(-$\frac{2}{3}$${a^{-\frac{2}{3}}}$${b^{-\frac{1}{3}}}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2+|x-a|+1(x∈R)
(1)討論f(x)的奇偶性;
(2)當(dāng)x≤a時(shí),求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.求圓C1:(x-3)2+y2=4與圓C2:x2+(y+4)2=2的圓心距5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知sin$\frac{α}{2}$=$\frac{1}{3}$,α∈(0,π),求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求下列函數(shù)的導(dǎo)數(shù):
(1)y=exsinx;
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$);
(3)y=x-sin$\frac{x}{2}$cos$\frac{x}{2}$;
(4)y=$\frac{1-x}{x}$+lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖所示為函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的部分圖象,其中A,B兩點(diǎn)之間的距離為5,那么f(-1)=( 。
A.-1B.-$\sqrt{3}$C.$\sqrt{3}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案