16.直線2ax+(a2+1)y-1=0的傾斜角的取值范圍是(  )
A.[$\frac{π}{4}$,$\frac{3π}{4}$]B.[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π]C.(0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)D.[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)

分析 設直線2ax+(a2+1)y-1=0的傾斜角為θ,可得tanθ=-$\frac{2a}{{a}^{2}+1}$,對a分類討論,利用基本不等式的性質、三角函數(shù)求值即可得出.

解答 解:設直線2ax+(a2+1)y-1=0的傾斜角為θ,
則tanθ=-$\frac{2a}{{a}^{2}+1}$,
a=0時,tanθ=0,可得θ=0;
a>0時,tanθ≥$-\frac{2a}{2a}$=-1,當且僅當a=1時取等號,∴θ∈$[\frac{3π}{4},π)$;
a<0時,tanθ≤1,當且僅當a=-1時取等號,∴θ∈$(0,\frac{π}{4}]$;
綜上可得:θ∈$[0,\frac{π}{4}]$∪$[\frac{3π}{4},π)$.
故選:D.

點評 本題考查了基本不等式的性質、三角函數(shù)求值、分類討論方法、傾斜角與斜率的關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.下列不等式成立的是( 。
A.若a>b>0,則$\frac{a}$>$\frac{b+1}{a+1}$B.若a>b>0,則lg$\frac{a+b}{2}$<$\frac{lga+lgb}{2}$
C.若a>b>0,則a+$\frac{1}$>b+$\frac{1}{a}$D.若a>b>0,則$\sqrt{a}-\sqrt$>$\sqrt{a-b}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合A={2n|n∈N,n<5},B={0,1,2,…,9,10},則集合∁BA中元素的個數(shù)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在正三棱柱ABC-A1B1C1中,AB=$\sqrt{2}$AA1,求證:BC1=AB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某種汽車在水泥路面上的剎車距離(剎車距離指汽車剎車后由于慣性往前滑行的距離)y m和汽車車速x km/h有如下關系:y=$\frac{1}{20}$x+$\frac{1}{180}$x2
(I)在一次交通事故中,測得這種汽車的剎車距離不小于$\frac{81}{2}$m,求這輛汽車剎車前的車速的最小值;
(Ⅱ)定義剎車摩擦比值:在剎車過程中,剎車距離(m)與10倍“車重(噸)”求和后,再除以車速(km/h)所得的比值為剎車摩擦比值.若這輛汽車的車重為2噸,求這輛汽車的最小剎車摩擦比值及此時的車速.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.直線m:x+(a2-1)y+1=0,直線n:x+(2-2a)y-1=0,則“a=-3”是“直線m、n關于原點對稱”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,輸出k的值為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.復數(shù)z滿足z(1-i)=|1+i|,則復數(shù)z的共軛復數(shù)在復平面內的對應點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.若數(shù)列{an}滿足|an+1-an|=p,當p=$\frac{1}{2}$時,則稱{an}為“規(guī)則數(shù)列”;當p=$\frac{1}{{2}^{n}}$時,則稱{an}為“收縮數(shù)列”,記Sn=a1+a2+…+an
(1)若{an}是首項為2的“規(guī)則數(shù)列”,求a2016的不同取值個數(shù)以及最大值,求使得Sn=0成立的n的最小值
(2)已知{an}是首項為3的“規(guī)則數(shù)列”,求證:a99=52成立的充要條件是數(shù)列{an}是遞增數(shù)列;
(3)是否存在首項a1≥1的“收縮數(shù)列”{an},使得$\underset{lim}{n→∞}$Sn存在,若存在,求出極限;若不存在,請說明理.

查看答案和解析>>

同步練習冊答案