14.已知函數(shù)f(x)=$\sqrt{6}sin\frac{x}{2}cos\frac{x}{2}+\sqrt{2}{cos^2}\frac{x}{2}$
(1)將函數(shù)f(x)化簡成Asin(ωx+φ)+B(A>0,φ>0,φ∈[0,2π))的形式;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)求函數(shù)f(x)在[$\frac{π}{4}$,$\frac{7π}{6}$]上的最大值和最小值.

分析 (1)利用三角函數(shù)中的恒等變換應(yīng)用化簡函數(shù)解析式即可得解f(x)=$\sqrt{2}sin(x+\frac{π}{6})+\frac{{\sqrt{2}}}{2}$,
(2)令$2kπ+\frac{π}{2}≤x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,即可解得f(x)單調(diào)遞減區(qū)間.
(3)由$\frac{π}{4}≤x≤\frac{7π}{6}$得$\frac{5π}{12}≤x+\frac{π}{6}≤\frac{4π}{3}$,利用正弦函數(shù)的圖象和性質(zhì)可得$-\frac{{\sqrt{3}}}{2}≤sin({x+\frac{π}{6}})≤1$,從而得解.

解答 解:(1)$f(x)=\frac{{\sqrt{6}}}{2}sinx+\sqrt{2}(\frac{1+cosx}{2})$=$\sqrt{2}(\frac{{\sqrt{3}}}{2}sinx+\frac{1}{2}cosx)+\frac{{\sqrt{2}}}{2}$=$\sqrt{2}sin(x+\frac{π}{6})+\frac{{\sqrt{2}}}{2}$,
(2)令$2kπ+\frac{π}{2}≤x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,
解得$2kπ+\frac{π}{3}≤x≤2kπ+\frac{4π}{3}$,
∴f(x)單調(diào)遞減區(qū)間為$[{2kπ+\frac{π}{3},2kπ+\frac{4π}{3}}]$,k∈Z.
(3)由$\frac{π}{4}≤x≤\frac{7π}{6}$得$\frac{5π}{12}≤x+\frac{π}{6}≤\frac{4π}{3}$,
∴$-\frac{{\sqrt{3}}}{2}≤sin({x+\frac{π}{6}})≤1$
故當(dāng)x=$\frac{7π}{6}$時(shí),f(x)有最小值$\frac{{\sqrt{2}-\sqrt{6}}}{2}$;當(dāng)x=$\frac{π}{3}$時(shí),f(x)有最大值$\frac{{3\sqrt{2}}}{2}$.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象和性質(zhì),熟練掌握正弦函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.化曲線E的極坐標(biāo)方程:kρcos2θ+3ρsin2θ-6cosθ=0為直角坐標(biāo)方程,并說明曲線的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a>b>c,a+b+c=0,方程ax2+bx+c=0的兩個(gè)實(shí)根為x1,x2
(1)證明:-$\frac{1}{2}$<$\frac{a}$<1;
(2)求|x${\;}_{1}^{2}$-x${\;}_{2}^{2}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中指數(shù)函數(shù)的個(gè)數(shù)為(  )
①y=($\frac{1}{2}$)x-1;②y=2•3x;③y=ax(a>0且a≠1);④y=1x;⑤y=($\frac{1}{2}$)2x-1.
A.1個(gè)B.2個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.cos27°cos57°-sin27°cos147°等于( 。
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知2sin2α=1+cos2α,則tan2α=( 。
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$\frac{4}{3}$或0D.$-\frac{4}{3}$或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f($\frac{1}{x}$)=$\frac{1}{1+x}$,則函數(shù)f(x)的解析式是 ( 。
A.$\frac{x}{x+1}$ (x≠0)B.1+xC.$\frac{1+x}{x}$D.$\frac{1}{x+1}$(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若$\frac{2x-y}{x+y}=\frac{2}{3}$,則$\frac{x}{y}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知矩形ABCD,BC⊥平面ABE,F(xiàn)為CE的中點(diǎn).
(1)求證:直線AE∥平面BDF;
(2)若AE=BE=$\frac{\sqrt{2}}{2}$AB,求證:AE⊥平面BCE.

查看答案和解析>>

同步練習(xí)冊(cè)答案