11.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則$\frac{y}{x+1}$的最大值為$\frac{3}{2}$.

分析 由約束條件作出可行域,再由$\frac{y}{x+1}$的幾何意義,即可行域內(nèi)的動(dòng)點(diǎn)與定點(diǎn)P(-1,0)連線的斜率求得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$,解得A(1,3),
由$\frac{y}{x+1}$的幾何意義,即可行域內(nèi)的動(dòng)點(diǎn)與定點(diǎn)P(-1,0)連線的斜率可得,
$\frac{y}{x+1}$的最大值為${k}_{PA}=\frac{3-0}{1-(-1)}=\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=10x-|lg(-x)|有兩個(gè)零點(diǎn)x1,x2,則( 。
A.$\frac{1}{10}$<x1x2<1B.$\frac{1}{2}$<x1x2<1C.$\frac{1}{e}$<x1x2<1D.1<x1x2<e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知a∈R,復(fù)數(shù)(2+ai)(2-i)的實(shí)部與虛部互為相反數(shù),則a的值為$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.命題“若a>b,則ac2>bc2(a,b∈R)”與它的逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)為( 。
A.4B.3C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在圓C1:x2+y2=4內(nèi)任取一點(diǎn)P,P落在圓C2:(x-a)2+y2=1內(nèi)的概率是$\frac{1}{4}$,則a的范圍是(  )
A.-1≤a≤1B.-2≤a≤2C.0≤a≤1D.-1≤a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若直線進(jìn)過(guò)點(diǎn)A(1,0)與點(diǎn)B(4,$\sqrt{3}$),在直線AB的傾斜角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,已知a,b,c分別是角A,B,C的對(duì)邊,且滿足$\frac{cosA}{cosC}$=-$\frac{a}{2b+c}$
(1)求角A的大小;
(2)若a=2,求△ABC的周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}的前n項(xiàng)和為Sn,{an}與{$\sqrt{S_n}$}均為公差為d(d≠0)的等差數(shù)列,則a3的值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,sinA=$\frac{1}{2}$,sinB=$\frac{4}{5}$,a=2cm,則b=$\frac{16}{5}$cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案