分析 (1)根據(jù)正弦定理進(jìn)行化簡即可求角A的大。
(2)由正弦定理可得$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$=2$\sqrt{3}$.化為a+b+c=3+$2\sqrt{3}(sinB+sinC)$=2+$\frac{4\sqrt{3}}{3}$sin($\frac{π}{3}$+C),再利用三角函數(shù)的單調(diào)性即可得出.
解答 解:(1)∵$\frac{cosA}{cosC}$=-$\frac{a}{2b+c}$
∴$\frac{cosA}{cosC}$=-$\frac{a}{2b+c}$=-$\frac{sinA}{2sinB+sinC}$,
即2sinBcosA+cosAsinC=-sinAcosC,
即2sinBcosA=-(sinAcosC+cosAsinC)=-sin(A+C)=-sinB,
∵sinB≠0,
∴cosA=-$\frac{1}{2}$,即A=$\frac{2π}{3}$;
(2)由正弦定理可得$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$=$\frac{2}{sin\frac{2π}{3}}$=$\frac{2}{\frac{\sqrt{3}}{2}}$=$\frac{4\sqrt{3}}{3}$.
∴$\frac{a+b+c}{\frac{\sqrt{3}}{2}+sinB+sinC}$=$\frac{4\sqrt{3}}{3}$,
∴a+b+c=2+$\frac{4\sqrt{3}}{3}$(sinB+sinC)=2+$\frac{4\sqrt{3}}{3}$[sin($\frac{π}{3}$-C)+sinC]
=2+$\frac{4\sqrt{3}}{3}$sin($\frac{π}{3}$+C),
∵0<C<$\frac{π}{3}$,
∴$\frac{π}{3}$<C+$\frac{π}{3}$<$\frac{2π}{3}$,
∴$\frac{\sqrt{3}}{2}$<sin(C+$\frac{π}{3}$)≤1,
2<$\frac{4\sqrt{3}}{3}$sin($\frac{π}{3}$+C)≤$\frac{4\sqrt{3}}{3}$,
則4<2+$\frac{4\sqrt{3}}{3}$sin($\frac{π}{3}$+C)≤2+$\frac{4\sqrt{3}}{3}$,
即4<a+b+c≤2+$\frac{4\sqrt{3}}{3}$,
∴△ABC的周長的取值范圍是(4,2+$\frac{4\sqrt{3}}{3}$].
點(diǎn)評 本題考查了正弦定理、兩角和差的正弦公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 18 | C. | 36 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com