8.已知(ax+$\frac{1}{x}$)6二項(xiàng)展開(kāi)式的第五項(xiàng)系數(shù)為$\frac{15}{2}$,則正實(shí)數(shù)a的值為$\frac{\sqrt{2}}{2}$.

分析 T5=${a}^{2}{∁}_{6}^{4}$x-2,由已知可得:${a}^{2}{∁}_{6}^{4}$=$\frac{15}{2}$,a>0.解出即可得出.

解答 解:T5=${∁}_{6}^{4}(ax)^{2}(\frac{1}{x})^{4}$=${a}^{2}{∁}_{6}^{4}$x-2,
∴${a}^{2}{∁}_{6}^{4}$=$\frac{15}{2}$,a>0.
解得a=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知中心在原點(diǎn),焦點(diǎn)在y軸上的橢圓C,其上一點(diǎn)P到兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離之和為4,離心率為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓C的方程;
(2)若直線y=kx+1與曲線C交于A,B兩點(diǎn),求△AOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若直線y=k(x+1)上存在點(diǎn)(x,y)滿足約束條件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\\{\;}\end{array}\right.$,則直線y=k(x+1)的傾斜角的取值范圍為$[{\frac{π}{6},\frac{π}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=-cos2x-8sinx+9.則函數(shù)f(x)的最小值為(  )
A.2B.0C.18D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.集合A={x|x2-3x<0},集合B={x||x|<2},則A∪B=(-2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若二項(xiàng)式(x+$\frac{1}{\sqrt{x}}$)6的展開(kāi)式中的x3項(xiàng)大于15,且x為等比數(shù)列an的公比,則$\underset{lim}{n→∞}\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{{a}_{3}+{a}_{4}+…+{a}_{n}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在平面直角坐標(biāo)系中,已知A(cosα,sinα),B(cosβ,sinβ),P(cosγ,sinγ)α,β,γ∈[0,2π),α≠β≠γ,設(shè)f(x)=|$\overrightarrow{BP}$-x$\overrightarrow{BA}$|(x∈R)的最小值為M(γ),若M(γ)的最大值為$\frac{5}{4}$,則|$\overrightarrow{AB}$|的值等于$\frac{\sqrt{15}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|y=$\sqrt{4-{x}^{2}}$},B={x|a≤x≤a+1},若A∪B=A,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知命題p:方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{m+3}$=1表示的曲線為雙曲線;q:函數(shù)y=(m2-m-1)x為增函數(shù),分別求出符合下列條件的實(shí)數(shù)m的范圍.
(Ⅰ)若命題“p且q”為真;
(Ⅱ)若命題“p或q”為真,“p且q”為假.

查看答案和解析>>

同步練習(xí)冊(cè)答案