分析 (1)由已知根據(jù)正弦定理得$\sqrt{3}$sinA=2sinBsinA,結(jié)合sinA>0,可求sinB,結(jié)合B的范圍,即可求B的值.
(2)由余弦定理ac=3,利用三角形面積公式即可得解得解.
解答 (本題滿分為10分)
解:(1)由$\sqrt{3}$a=2bsinA,根據(jù)正弦定理得
$\sqrt{3}$sinA=2sinBsinA,…(2分)
∵sinA>0,
∴sinB=$\frac{\sqrt{3}}{2}$,
則由△ABC為銳角三角形,得B=$\frac{π}{3}$. …(4分)
(2)∵b=$\sqrt{7}$,a+c=4,B=$\frac{π}{3}$,
∴由余弦定理有b2=a2+c2-2accosB,…(6分)
得b2=(a+c)2-2ac-2accosB,
即7=16-2ac(1+$\frac{1}{2}$),解得ac=3.…(9分)
∴△ABC的面積S=$\frac{1}{2}$acsinB=$\frac{1}{2}×3×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$. …(10分)
點評 本題主要考查了正弦定理,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
幾何題 | 代數(shù)題 | 總計 | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com