17.若4≤a≤8,0≤b≤2,則a+b的取值范圍是( 。
A.(4,10)B.[4,10]C.(6,8)D.[6,8]

分析 直接利用不等式的簡單性質(zhì)計算即可.

解答 解:4≤a≤8,0≤b≤2,則a+b∈[4,10].
故選:B.

點評 本題考查不等式的簡單性質(zhì)的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.在平面直角坐標系中,點P是直線l:x=-$\frac{1}{2}$上一動點,定點F($\frac{1}{2}$,0),點Q為PF的中點,動點M滿足$\overrightarrow{MQ}$•$\overrightarrow{PF}$=0,$\overrightarrow{MP}$=λ$\overrightarrow{OF}$(λ∈R),過點M作圓(x-3)2+y2=2的切線,切點分別為S,T,則滿足|ST|的最小值為$\frac{2\sqrt{30}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.先把函數(shù)y=cosx的圖象上所有點向右平移$\frac{π}{3}$個單位,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$倍(縱坐標不變),得到的函數(shù)圖象的解析式為( 。
A.y=cos(2x+$\frac{π}{3}$)B.y=cos(2x-$\frac{π}{3}$)C.y=cos($\frac{1}{2}$x+$\frac{π}{3}$)D.y=cos($\frac{1}{2}$x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(1+x,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x的值為$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=x2+ax+b,a,b∈R,A={x|f(x)=x,x∈R},B={x|f[f(x)]=x,x∈R}
(1)寫出集合A與B之間的關系,并證明;
(2)當A={-1,3}時,用列舉法表示集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知曲線C的方程為$\frac{x^2}{a^2}-{y^2}$=1(a∈R且a≠0),則“a>1”是“曲線C是焦點在x軸上的雙曲線”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等差數(shù)列{an}滿足a3=5,a5+a7=22,等差數(shù)列{an}的前n項和Sn
(Ⅰ)求數(shù)列{an}的通項an和前n項和Sn
(Ⅱ)若bn=2nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.某工廠生產(chǎn)甲、乙、丙三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為5:2:3,現(xiàn)用分層抽樣的方法抽出一個容量為n的樣本,樣本中甲型號產(chǎn)品共15件,那么樣本容量n=30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若直線y=x+m與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1有兩個公共點,則m的取值范圍是(  )
A.(-5,5)B.(-2,2)C.(-$\sqrt{7}$,$\sqrt{7}$)D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

同步練習冊答案