分析 (1)若x∈A,則x=f(x)成立,則f[f(x)]=f(x)=x必成立,進(jìn)而根據(jù)集合包含關(guān)系的定義,得到結(jié)論;
(2)由A={x|f(x)=x}={x|x2+ax+b=x}={x|x2+(a-1)x+b=0}={-1,3},結(jié)合方程根與系數(shù)關(guān)系可求a,b,進(jìn)而可求,f(x),然后代入B={x|f[f(x)]=x}整理可求.
解答 (1)證明:若x∈A,則x=f(x)成立,
則f[f(x)]=f(x)=x必成立,即x∈B,
故A⊆B;
(2)解:∵A={x|f(x)=x}={x|x2+ax+b=x}={x|x2+(a-1)x+b=0}={-1,3},
∴-1,3是方程x2+(a-1)x+b=0的根,
∴$\left\{\begin{array}{l}{1-a=2}\\{b=-3}\end{array}\right.$,即a=-1,b=-3,
∴f(x)=x2-x-3,
∴B={x|f[f(x)]=x}={x|f(x2-x-3)=x}={x|(x2-x-3)2-(x2-x-3)-3=x},
化簡可得,(x2-x-3)2-x2=0,
∴(x2-3)(x2-2x-3)=0,
∴x=$\sqrt{3}$或x=-$\sqrt{3}$或x=3或x=-1,
∴B={$\sqrt{3}$,-$\sqrt{3}$,-1,3}.
點(diǎn)評(píng) 本題主要考查了二次函數(shù)與二次方程之間關(guān)系的相互轉(zhuǎn)化,方程的根與系數(shù)關(guān)系的應(yīng)用
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{7},\frac{4}{7}$ | B. | $\frac{1}{2},\frac{1}{4}$ | C. | $\frac{1}{6},\frac{2}{7}$ | D. | $\frac{1}{6},\frac{3}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k>1 | B. | $k>\frac{1}{3}$ | C. | $k>\frac{1}{5}$ | D. | $k>\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com