2.曲線y=$\frac{1}{x}$與直線x=$\frac{1}{e}$、直線x=e及x軸所圍成的封閉圖形的面積等于2.

分析 由題意,利用定積分表示所圍成的封閉圖形的面積,利用定積分計(jì)算.

解答 解:由題意,曲線y=$\frac{1}{x}$與直線x=$\frac{1}{e}$、直線x=e及x軸所圍成的封閉圖形的面積為${∫}_{\frac{1}{e}}^{e}\frac{1}{x}dx$=lnx|${\;}_{\frac{1}{e}}^{e}$=lne-ln$\frac{1}{e}$=2;
故答案為:2.

點(diǎn)評 本題考查利用定積分求面積,解題的關(guān)鍵是確定被積區(qū)間及被積函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{3}=1(a>0)$的離心率為2,則其一條漸近線方程為( 。
A.x-3y=0B.$\sqrt{3}$x-y=0C.x-$\sqrt{3}$y=0D.3x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若以x軸正方向?yàn)槭歼,曲線上的點(diǎn)與圓心的連線為終邊的角θ為參數(shù),則圓x2+y2-2x=0的參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ+1}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.正方體ABCD-A1B1C1D1的棱長為1,動點(diǎn)P,Q分別在棱BC,CC1上,過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S,設(shè)BP=x,CQ=y,其中x,y∈[0,1],下列命題正確的是②.(寫出所有正確命題的編號)
①當(dāng)x=0時(shí),S為矩形,其面積最大為1;
②當(dāng)x=y=$\frac{1}{2}$時(shí),S為等腰梯形;
③當(dāng)x=$\frac{1}{2}$,y=$\frac{3}{4}$時(shí),S為六邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.甲、乙兩家快餐店對某日7個(gè)時(shí)段光順的客人人數(shù)進(jìn)行統(tǒng)計(jì)并繪制莖葉圖如圖所示(下面簡稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.
(1)求a,b的值.并計(jì)算乙數(shù)據(jù)的方差;
(2)現(xiàn)從甲、乙兩組數(shù)據(jù)中隨機(jī)各選一個(gè)數(shù)分別記為m,n.并進(jìn)行對比分析,有放回的選取2次,記m>n的次數(shù)為X.求X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在△ABC中,∠BAC=120°,AB=2,AC=1,D是BC邊上的一點(diǎn)(包括端點(diǎn)),若$\overrightarrow{AD}$•$\overrightarrow{BC}$∈[m,n],則$\frac{n}{m-n}$的值為$-\frac{2}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若a=$\int_{-\frac{π}{2}}^{\frac{π}{2}}$($\frac{1}{π}$-sinx)dx,則(x-$\frac{a}{{\sqrt{x}}}$)6的二項(xiàng)展開式中的常數(shù)項(xiàng)為15(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=x3B.y=lnxC.y=sinxD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知(x-y)(x+y)5的展開式中x2y4的系數(shù)為m,則${∫}_{1}^{2}$(xm+$\frac{1}{x}$)dx=ln2+$\frac{15}{64}$.

查看答案和解析>>

同步練習(xí)冊答案