8.函數(shù)y=2sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{3}$cos$\frac{x}{2}$的最大值為2.

分析 由三角函數(shù)公式化簡可得y=2sin($\frac{x}{2}$+$\frac{π}{3}$),由振幅的意義可得最大值.

解答 解:由三角函數(shù)公式化簡可得:
y=2sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{3}$cos$\frac{x}{2}$
=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$=2sin($\frac{x}{2}$+$\frac{π}{3}$),
∴函數(shù)的最大值為:2
故答案為:2.

點評 本題考查三角函數(shù)的最值,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標系中,以坐標原點為極點,x軸為正半軸建立極坐標系,圓C的極坐標方程為ρ=4cosθ-2sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-t}\\{y=\frac{1}{2}+at}\end{array}\right.$(t為參數(shù),a為常數(shù)).
(1)求直線l普通方程與圓C的直角坐標方程;
(2)若直線l分圓C所得的兩弧長度之比為1:2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC的三內(nèi)角A,B,C,的對邊分別為a,b,c且b2=ac.
(1)若cosB=$\frac{\sqrt{6}}{3}$,求$\frac{1}{tanA}$+$\frac{1}{tanC}$的值;
(2)若b=2,△ABC的面積等于$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(tanx)=$\frac{1}{co{s}^{2}x}$,則f(-$\sqrt{3}$)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.用“五點法”作出函數(shù)y=2sin($\frac{1}{2}$x+$\frac{π}{4}$)的圖象,并求出函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.數(shù)字1,2,3,4任意排成一列,如果數(shù)字k恰好出現(xiàn)在第k個位置上,則稱有一個巧合,求巧合數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C:x2+y2+2x-4y+3=0.
(1)直線l過點(-2,0)且被圓C截得的弦長為2,求直線l的方程;
(2)從直線2x-4y+3=0上一點P向圓引一條切線,切點為M,求|PM|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=|sin2x|的最小正周期為(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC的三條邊長為a,b,c,則“△ABC是等邊三角形”是“a2+b2+c2=ab+ac+bc”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案