分析 (1)求出原函數(shù)的導(dǎo)函數(shù),確定導(dǎo)數(shù)恒大于0,從而可得求函數(shù)φ (x)的單調(diào)區(qū)間;
(2)把g(x)≥kf(x+1)+1 (x≥0)恒成立,轉(zhuǎn)化為kln(x+1)≤ex-1在x≥0時(shí)恒成立,然后分k≤0和k>0討論,當(dāng)k>0時(shí),利用放縮法轉(zhuǎn)化為kln(x+1)≤kx≤ex-1恒成立求解;
(3)先求直線l為函數(shù)的圖象上一點(diǎn)A(x0,f (x0))處的切線方程,再設(shè)直線l與曲線y=g(x)相切于點(diǎn)(${x}_{1},{e}^{{x}_{1}}$),進(jìn)而可得$ln{x}_{0}=\frac{{x}_{0}+1}{{x}_{0}-1}$,再證明在區(qū)間(1,+∞)上x0存在且唯一即可.
解答 (1)解:φ(x)=f(x)-$\frac{x+1}{x-1}$=lnx-$\frac{x+1}{x-1}$,
φ′(x)=$\frac{1}{x}+\frac{2}{(x-1)^{2}}=\frac{{x}^{2}+1}{x(x-1)^{2}}$.
∵x>0且x≠1,∴φ'(x)>0,
∴函數(shù)φ(x)的單調(diào)遞增區(qū)間為(0,1)和(1,+∞);
(2)解:由g(x)≥kf(x+1)+1 (x≥0)恒成立,
得ex≥kln(x+1)+1在x≥0時(shí)恒成立,
即kln(x+1)≤ex-1在x≥0時(shí)恒成立,
∵ex-1≥0,ln(x+1)≥0.
若k≤0,則kln(x+1)≤ex-1在x≥0時(shí)恒成立;
若k>0,由ln(x+1)≤x,得kln(x+1)≤kx,
由kx≤ex-1,知當(dāng)x=0時(shí),對(duì)于任意正實(shí)數(shù)k都成立,
當(dāng)x>0時(shí),不等式化為$k<\frac{{e}^{x}-1}{x}$,
令h(x)=$\frac{{e}^{x}-1}{x}$,h′(x)=$\frac{x{e}^{x}-{e}^{x}+1}{{x}^{2}}=\frac{(x-1){e}^{x}+1}{{x}^{2}}$.
令φ(x)=(x-1)ex,則φ′(x)=xex>0,
∴φ(x)=(x-1)ex在(0,+∞)上為增函數(shù),
則h′(x)>h′(0)=0,
則h(x)在(0,+∞)上為增函數(shù),
∴h(x)>h(0)=1.
∴當(dāng)0<k≤1時(shí),kln(x+1)≤kx≤ex-1恒成立.
綜上,若x≥0,則使g(x)≥kf(x+1)+1恒成立的實(shí)數(shù)k的取值范圍是(-∞,1];
(3)證明:∵f′(x)=$\frac{1}{x}$,∴f′(x0)=$\frac{1}{{x}_{0}}$,
∴切線l的方程為y-lnx0=$\frac{1}{{x}_{0}}$(x-x0),
即y=$\frac{1}{{x}_{0}}x+ln{x}_{0}-1$,①
設(shè)直線l與曲線y=g(x)相切于點(diǎn)(${x}_{1},{e}^{{x}_{1}}$),
∵g′(x)=ex,∴${e}^{{x}_{1}}=\frac{1}{{x}_{0}}$,∴x1=-lnx0.
∴直線l方程又為y-$\frac{1}{{x}_{0}}$=$\frac{1}{{x}_{0}}$(x+lnx0),
即y=$\frac{1}{{x}_{0}}x+\frac{ln{x}_{0}}{{x}_{0}}+\frac{1}{{x}_{0}}$,②
由①②得$ln{x}_{0}-1=\frac{ln{x}_{0}}{{x}_{0}}+\frac{1}{{x}_{0}}$,
∴$ln{x}_{0}=\frac{{x}_{0}+1}{{x}_{0}-1}$.
下面證明在區(qū)間(1,+∞)上x0存在且唯一.
由(1)可知,φ(x)=lnx-$\frac{x+1}{x-1}$在區(qū)間(1,+∞)上遞增.
又φ(e)=lne-$\frac{e+1}{e-1}$=$\frac{-2}{e-1}<0$,φ(e2)=$ln{e}^{2}-\frac{{e}^{2}+1}{{e}^{2}-1}=\frac{{e}^{2}-3}{{e}^{2}-1}>0$,
結(jié)合零點(diǎn)存在性定理,說明方程φ(x)=0必在區(qū)間(e,e2)上有唯一的根,這個(gè)根就是所求的唯一x0.
在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用運(yùn)用,考查數(shù)學(xué)轉(zhuǎn)化思想方法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,訓(xùn)練了函數(shù)零點(diǎn)存在性定理的用法,綜合性比較強(qiáng),難度較大,屬壓軸題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 6 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | π | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{7}}{7}$ | B. | $\frac{\sqrt{21}}{7}$ | C. | $\frac{\sqrt{35}}{7}$ | D. | $\frac{2\sqrt{21}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | 2 | 5 | |||
y | 6 | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com