A. | 向左平移$\frac{π}{12}$個單位長度 | B. | 向右平移$\frac{π}{12}$個單位長度 | ||
C. | 向左平移$\frac{π}{6}$個單位長度 | D. | 向右平移$\frac{π}{6}$個單位長度 |
分析 由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,從而求得函數(shù)的解析式,利用誘導公式可得f(x)=cos2(x-$\frac{π}{12}$),再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答 解:由函數(shù)的圖象可得 A=1,由 $\frac{T}{4}$=$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,可得ω=2.
再根據(jù)五點法作圖可得 2×$\frac{π}{3}$+φ=π 求得 φ=$\frac{π}{3}$,
故函數(shù)的解析式為 f(x)=sin(2x+$\frac{π}{3}$).
由f(x)=sin(2x+$\frac{π}{3}$)=cos($\frac{π}{6}$-2x)=cos2(x-$\frac{π}{12}$),
故將f(x)的圖象向左平移$\frac{π}{12}$個單位,即可得到g(x)=cos2x的圖象.
故選:A.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,誘導公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個三角函數(shù)的名稱,是解題的關鍵,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,3) | B. | (2,4) | C. | (3,4] | D. | (2,4] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com