19.下列各項中最小的數(shù)是(  )
A.111111(2)B.150(6)C.1000(4)D.101(8)

分析 將各數(shù)轉(zhuǎn)化為十進制數(shù)即可比較出最小的數(shù).

解答 解:A.111111(2)=1×25+1×24+1×23+1×22+1×21+1×20=63.
B.150(6)=1×62+5×61+0×60=66.
C.1000(4)=1×43+0×42+0×41+0×40=64.
D.101(8)=1×82+0×81+1×80=65.
由以上可知,111111(2)最小.
故選:A.

點評 本題主要考察k(2≤k≤9)進制數(shù)與十進制的相互轉(zhuǎn)化的方法.屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.設F1,F(xiàn)2為橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點,且|F1F2|=2c,若橢圓上存在點P使得|PF1|•|PF2|=2c2,則橢圓的離心率的最小值為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切與M(3,0).
(1)求f(x)得解析式,并求y=$\frac{f(x)}{x}$+4lnx的單調(diào)減區(qū)間;
(2)是否存在兩個不等正數(shù)s,t(s<t),滿足$\left\{\begin{array}{l}{f(s)=t}\\{f(t)=s}\end{array}\right.$,若存在,求出所有這樣的正數(shù)s,t,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.雙曲線${x^2}-\frac{y^2}{3}=1$的實軸長是2,漸近線方程是y=$±\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.將兩個數(shù)a=2015,b=2016交換使得a=2016,b=2015下列語句正確的一組是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,PT切⊙O于點T,PA交⊙O于A,B兩點,且與直徑CT交于點D,CD=3,AD=4,BD=6,則PB=( 。
A.6B.8C.10D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,A,B,C為⊙O上的三個點,AD是∠BAC的平分線,交⊙O于點D,過B作⊙O的切線交AD的延長線于點E.
(Ⅰ)證明:BD平分∠EBC;
(Ⅱ)證明:AE•DC=AB•BE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=xex-alnx,曲線y=f(x)在點(1,f(1))處的切線平行于x軸.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:b≤e時,f(x)≥b(x2-2x+2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,四棱錐P-ABCD的底面是矩形,△PAD為等邊三角形,且平面PAD⊥平面ABCD,E,F(xiàn)分別為PC和BD的中點.
(Ⅰ)證明:EF∥平面PAD;
(Ⅱ)證明:平面PDC⊥平面PAD;
(Ⅲ)若矩形ABCD的周長為6,設AD=x,當x為何值時,四棱錐P-A BCD的體積最大?

查看答案和解析>>

同步練習冊答案