2.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,短軸長(zhǎng)為2,離心率為$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是橢圓C長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)P作斜率為$\frac{1}{2}$的直線l交橢圓C于A,B兩點(diǎn),求證:|PA|2+|PB|2為定值.

分析 (Ⅰ)設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),運(yùn)用離心率公式和a,b,c的關(guān)系,解方程即可得到a=2,b=1,即可得到橢圓方程;
(Ⅱ)設(shè)P(m,0)(-2≤m≤2),設(shè)直線l的方程是y=$\frac{1}{2}$(x-m)與橢圓的方程聯(lián)立得到根與系數(shù)的關(guān)系,再利用兩點(diǎn)間的距離公式即可證明.

解答 解:(Ⅰ)設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由短軸長(zhǎng)為2,離心率為$\frac{{\sqrt{3}}}{2}$,
則b=1,$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,a2-b2=c2,
解得a=2,c=$\sqrt{3}$,
即有橢圓方程為$\frac{{x}^{2}}{4}$+y2=1;
(Ⅱ)證明:設(shè)P(m,0)(-2≤m≤2),
∴直線l的方程是y=$\frac{1}{2}$(x-m),
聯(lián)立橢圓x2+4y2=4,
⇒2x2-2mx+m2-4=0(*)
設(shè)A(x1,y1),B(x2,y2),則x1、x2是方程(*)的兩個(gè)根,
∴x1+x2=m,x1x2=$\frac{{m}^{2}-4}{2}$,
∴|PA|2+|PB|2=(x1-m)2+y12+(x2-m)2+y22
=(x1-m)2+$\frac{1}{4}$(x1-m)2+(x2-m)2+$\frac{1}{4}$(x2-m)2=$\frac{5}{4}$[(x1-m)2+(x2-m)2]
=$\frac{5}{4}$[x12+x22-2m(x1+x2)+2m2]=$\frac{5}{4}$[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]
=$\frac{5}{4}$[m2-2m2-m2-4)+2m2]=5(定值).

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、兩點(diǎn)間的距離公式,考查了推理能力和計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知tanθ=-$\frac{1}{3}$,則$\frac{7sinθ-3cosθ}{4sinθ+5cosθ}$的值為$-\frac{16}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知點(diǎn)A(2,0),B(0,4),點(diǎn)P是過(guò)點(diǎn)M(0,-1)的直線l上任意一點(diǎn),∠APB是銳角,求l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某班舉行元旦文藝聯(lián)歡,在聯(lián)歡中除了有固定節(jié)目外,還有抽簽確定的即興表演,規(guī)定每六人一組,每組要抽出三人進(jìn)行表演.具體抽取辦法是:在暗箱中有三黃三白六個(gè)乒乓球,六人逐個(gè)上臺(tái)抽。ú环呕兀,抽到黃球者表演節(jié)目.若甲、乙在一組,求:
(1)甲、乙都抽到黃球的概率;
(2)在甲抽到黃球的前提下,乙抽到黃球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD=2,PD⊥底面ABCD,E為棱PC的中點(diǎn).
(1)PA∥平面BDE;
(2)證明:PA⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,且經(jīng)過(guò)點(diǎn)(0,1).圓C1:x2+y2=a2+b2
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(k≠0)與橢圓C有且只有一個(gè)公共點(diǎn)M,且l與圓C1相交于A,B兩點(diǎn),問(wèn)$\overrightarrow{AM}+\overrightarrow{BM}$=0是否成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知過(guò)點(diǎn)M (2,1)的直線l和橢圓x2+4y2=36相交于點(diǎn)A、B,且線段AB恰好以M為中點(diǎn),求直線l的方程和線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的離心率是(  )
A.$\frac{3}{4}$B.$\frac{5}{\sqrt{41}}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若變量x,y滿足約束條件$\left\{\begin{array}{l}{2x+3y≥6}\\{x-y≥0}\\{x≤3}\end{array}\right.$,則函數(shù)z=2x+y的最大值和最小值分別是(  )
A.9和6B.6和$\frac{18}{5}$C.9和5D.9和$\frac{18}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案