10.設(shè)函數(shù)f(x)=ln(1+x)-ln(1-x).
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并說明理由.

分析 (1)根據(jù)對數(shù)的真數(shù)大于零列出不等式組,即可求出函數(shù)的定義域;
(2)根據(jù)奇偶函數(shù)的定義域進(jìn)行判斷.

解答 解:(1)要使函數(shù)有意義,則$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$,
解得-1<x<1,
所以函數(shù)的定義域是(-1,1);
(2)函數(shù)f(x)是奇函數(shù),
由(1)知函數(shù)的定義域關(guān)于原點(diǎn)對稱,
因?yàn)閒(-x)=ln(1-x)-ln(1+x)=-f(x),
所以函數(shù)f(x)是奇函數(shù).

點(diǎn)評 本題考查對數(shù)函數(shù)的定義域,以及函數(shù)奇偶性的判斷,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知O為坐標(biāo)原點(diǎn),實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≤0}\\{3x+4y≤12}\\{x-1≥0}\end{array}\right.$,P(x,y)為該不等式組所表示的平面區(qū)域內(nèi)任意一點(diǎn),使z=x+2y取最大值的點(diǎn)為A點(diǎn),則|OP|•|AO|•cos∠AOP的最大值等于( 。
A.$\frac{97}{16}$B.$\frac{11}{2}$C.$\frac{167}{28}$D.$\frac{38}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\overrightarrow a$=(-1,2),$\overrightarrow b$=(λ,1)
(1)若$\overrightarrow a$⊥$\overrightarrow b$,求λ的值.
(2)若$\overrightarrow a$∥$\overrightarrow b$,求λ的值,并判斷此時是同向還是反向.
(3)若$\overrightarrow a$與$\overrightarrow b$所成夾角為銳角,求λ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時,f(x)=x2-4x,則不等式f(2x+3)≤5的解集為( 。
A.[-5,5]B.[-8,2]C.[-4,1]D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.極坐標(biāo)方程為ρ=2cosθ和ρ=4sinθ的兩個圓的圓心距離為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.否定“任何一個三角形的外角都至少有兩個鈍角”時正確的說法是( 。
A.存在一個三角形,其外角最多有一個鈍角
B.任何一個三角形的外角都沒有兩個鈍角
C.沒有一個三角形的外角有兩個鈍角
D.存在一個三角形,其外角有兩個鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)m(x)=$\left\{\begin{array}{l}{{x}^{2},{x}^{2}≤{2}^{x}}\\{{2}^{x},{2}^{x}<{x}^{2}}\end{array}\right.$,則m(x)的最小值為(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在菱形ABCD中,AB=2$\sqrt{3}$,∠B=$\frac{2π}{3}$,$\overrightarrow{BC}=2\overrightarrow{BE}$,$\overrightarrow{DA}=3\overrightarrow{DF}$,則$\overrightarrow{EF}•\overrightarrow{AC}$=-15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一組數(shù)據(jù)的平均數(shù)、眾數(shù)和方差都是2,則這組數(shù)可以是( 。
A.2,2,3,1B.2,3,-1,2,4C.2,2,2,2,2,2D.2,4,0,2

查看答案和解析>>

同步練習(xí)冊答案