15.設(shè)x,y,z是非零實數(shù),若a=$\frac{x}{|x|}$+$\frac{y}{|y|}$+$\frac{z}{|z|}$+$\frac{xyz}{|xyz|}$,則以a的值為元素的集合中元素的個數(shù)是3.

分析 討論x,y,z的符號:全大于0,2個大于0,1個大于0,全小于0,這樣可求出每種情況的a的值,a的值的個數(shù)即為所求元素個數(shù).

解答 解:x,y,z都大于0時,a=4;
x,y,z中兩個大于0,一個小于0時,a=0;
x,y,z中一個大于0,兩個小于0時,a=0;
x,y,z都小于0時,a=-4;
∴以a的值為元素的集合中元素的個數(shù)是3.
故答案為:3.

點評 考查分類討論的方法的運用,集合與元素的概念,以及集合元素的互異性,清楚$\frac{x}{|x|}$的取值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁UA)∩B=∅,求實數(shù)m的取值范圍.
互助探究:本題中將條件“(∁UB)∩A=R”,其他條件不變,則m的取值范圍又是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知集合A={x|x>a+5或x<a},B={x|2≤x≤4},若A∩B≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=3x-1,g(x)=2x+3,求f[g(x)],g[f(x)].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知f(x)為R上的奇函數(shù),g(x)為R上的偶函數(shù),且f(x)、g(x)不恒為零,對于以下判斷:①f(x)+g(x)為奇函數(shù);②f(x)-g(x)為奇函數(shù);③f(x)•g(x)為奇函數(shù);④$\frac{f(x)}{g(x)}$為奇函數(shù).其中判斷正確的個數(shù)為(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知實數(shù)x,y滿足方程x2+y2=3,求$\frac{y+1}{x+3}$的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知定義在R上的函數(shù)f(x)的圖象既關(guān)于點(0,0)對稱,又關(guān)于直線x=1對稱.
(1)試證明函數(shù)f(x)是周期函數(shù);
(2)若當x∈(0,1]時f(x)=x,求函數(shù)f(x)在R上的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.命題“若x≠3且x≠4,則x2-7x+12≠0”的逆否命題是若x2-7x+12=0,則x=3或x=4真假性真.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某人忘記了密碼的最后兩個數(shù)字,只記得這兩個數(shù)字是不超過5的奇數(shù),則輸入一次就正確的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{9}$D.$\frac{1}{12}$

查看答案和解析>>

同步練習冊答案