分析 先設(shè)原結(jié)論不成立,然后推出直線在此平面內(nèi),從而得出原結(jié)論正確.
解答 證明:設(shè)該直線與平面有2個(gè)及2個(gè)以上交點(diǎn),由2點(diǎn)確定一條直線可知,該直線在此平面內(nèi),
則與原命題矛盾,
故:一個(gè)平面和不在這個(gè)平面內(nèi)的一條直線最多只有一個(gè)公共點(diǎn),
點(diǎn)評(píng) 解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:
(1)假設(shè)結(jié)論不成立;
(2)從假設(shè)出發(fā)推出矛盾;
(3)假設(shè)不成立,則結(jié)論成立.
在假設(shè)結(jié)論不成立時(shí)要注意考慮結(jié)論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2kπ-$\frac{π}{2}$,2kπ](k∈Z) | B. | (2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z) | ||
C. | (kπ-$\frac{π}{2}$,kπ](k∈Z) | D. | (2kπ+$\frac{π}{2}$,2kπ+π](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M(a,b)+m(a,b)=a+b | B. | m(|a+b|,|a-b|)=|a|-|b| | C. | M(|a+b|,|a-b|)=|a|+|b| | D. | m(M(a,b),m(a,b))=m(a,b) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com