A. | (2kπ-$\frac{π}{2}$,2kπ](k∈Z) | B. | (2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z) | ||
C. | (kπ-$\frac{π}{2}$,kπ](k∈Z) | D. | (2kπ+$\frac{π}{2}$,2kπ+π](k∈Z) |
分析 由已知得$\left\{\begin{array}{l}{cosα≥0}\\{tanα≤0}\end{array}\right.$,從而得到α是第四象限角或x軸正半軸上的角.
解答 解:∵|cosα|=cosα,|tanα|=-tanα,
∴$\left\{\begin{array}{l}{cosα≥0}\\{tanα≤0}\end{array}\right.$,
∴α是第四象限角或x軸正半軸上的角,
∴α的取值范圍是(2kπ-$\frac{π}{2}$,2kπ](k∈Z).
故選:A.
點評 本題考查角的范圍的求法,是基礎(chǔ)題,解題時要認真審題,注意三角函數(shù)符號的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | c<b<a | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ②① |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{144}$=1(x>0) | B. | $\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{144}$=1(x<0) | ||
C. | $\frac{{y}^{2}}{25}$-$\frac{{x}^{2}}{144}$=1(y>0) | D. | $\frac{{y}^{2}}{25}$-$\frac{{x}^{2}}{144}$=1(y<0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com