分析 (1)由三角函數(shù)公式化簡(jiǎn)可得f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)+2+a,由x的范圍和最小值可得a的方程,解方程可得;
(2)由題意可得sin(2x+$\frac{π}{3}$)=$\frac{1}{2}$,可得2x+$\frac{π}{3}$=$\frac{π}{6}$或2x+$\frac{π}{3}$=$\frac{5π}{6}$,解方程相加可得.
解答 解:(1)由三角函數(shù)公式化簡(jiǎn)可得f(x)=cos(2x-$\frac{π}{3}$)+2cos2x+a+1
=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+1+cos2x+a+1=$\frac{3}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+2+a
=$\sqrt{3}$sin(2x+$\frac{π}{3}$)+2+a,當(dāng)x∈[0,$\frac{π}{6}$]時(shí),2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{2π}{3}$],
∴當(dāng)2x+$\frac{π}{3}$=$\frac{π}{3}$或$\frac{2π}{3}$時(shí),f(x)的最小值$\sqrt{3}$×$\frac{\sqrt{3}}{2}$+2+a=2,解得a=-$\frac{3}{2}$;
(2)由(1)可得f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)+$\frac{1}{2}$,
∵x∈[-$\frac{π}{2}$,$\frac{π}{2}$],∴2x+$\frac{π}{3}$∈[$-\frac{2π}{3}$,$\frac{4π}{3}$],
由f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)+$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$可得sin(2x+$\frac{π}{3}$)=$\frac{1}{2}$,
∴2x+$\frac{π}{3}$=$\frac{π}{6}$或2x+$\frac{π}{3}$=$\frac{5π}{6}$,解得x=-$\frac{π}{12}$或x=$\frac{π}{4}$,
∴α+β=-$\frac{π}{12}$+$\frac{π}{4}$=$\frac{π}{6}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的最值,涉及三角函數(shù)的圖象和性質(zhì),屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{1}{6}$,$\frac{5}{2}$] | B. | [$\frac{1}{3}$,5] | C. | [$\frac{2}{3}$,10] | D. | [-$\frac{1}{3}$,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 12 | C. | 18 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com