9.已知直線l1:3x+4y-12=0與直線l2:ax+8y+11=0互相平行.
(1)求實數(shù)a的值;
(2)求直線l1與l2之間的距離.

分析 (1)通過直線的平行得到4a-24=0,求出a;
(2)利用兩條平行線之間的距離公式求解即可.

解答 解:(1)∵直線l1:3x+4y-12=0與直線l2:ax+8y+11=0互相平行,
∴4a-24=0,得a=6…(5分)
(2)直線l1:6x+8y-24=0與直線l2:ax+8y+11=0之間的距離$d=\frac{35}{10}=\frac{7}{2}$…(10分)

點評 本題考查兩條平行線之間的距離公式的應用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,平面PDC⊥平面ABCD,AC=AD=PD=PC,∠DAC=90°,M在PB上.
(Ⅰ)若點M是PB的中點,求證:PA⊥平面CDM;
(Ⅱ)在線段PB上確定點M的位置,使得二面角D-MC-B的余弦值為-$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={x|$\frac{x-1}{x-4$≤0},集合B={1,2,3,4},則A∩B=( 。
A.{1,2,3,4}B.{2,3}C.{1,2,3}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.當前《奔跑吧兄弟第四季》正在熱播,某校一興趣小組為研究“收看《奔跑吧兄弟第四季》與年齡是否相關(guān)”,在某市步行街隨機抽取了100名成人進行調(diào)查,發(fā)現(xiàn)45歲以下的被調(diào)查對象有40人收看,有15人未收看;45歲及以上的調(diào)查對象中有20人收看,有25人未收看.
(1)在被調(diào)查對象中,收看《奔跑吧兄弟第四季》的人數(shù)占各自年齡段的比例分別是多少?并初步判斷收看《奔跑吧兄弟第四季》與年齡是否有關(guān)?
(2)①試根據(jù)題設數(shù)據(jù)完成2×2列聯(lián)表:
收看不收看合計
45歲以下
45歲及以下
合計
②判斷是否有99.5%的把握認為收看《奔跑吧兄弟第四季》與年齡有關(guān):
附參考公式與數(shù)據(jù):K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.0100.005 0.001
k06.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.從一條生產(chǎn)線上每隔30min取一件產(chǎn)品,共取了n件,測得它們的長度(單位:cm)后,畫出其頻率分布直方圖如圖所示,若長度在[20,25)cm內(nèi)的頻數(shù)為40,則長度在[10,15)cm內(nèi)的產(chǎn)品共有16件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設函數(shù)f(x)是定義在R上的奇函數(shù),若f(x)的最小正周期為3,且f(1)>1,f(2)=$\frac{2m-3}{m+1}$,則m的取值范圍是( 。
A.-1<m<$\frac{2}{3}$B.m<$\frac{2}{3}$C.m<$\frac{2}{3}$且m≠-1D.m>$\frac{2}{3}$或m<-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,圍建一個面積為100m2的矩形場地,要求矩形場地的一面利用舊墻(舊墻需維修),其余三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,已知舊墻的維修費用為56元/米,新墻的造價為200元/米,設利用的舊墻長度為x(單位:米),修建此矩形場地圍墻的總費用y(單位:元)
(1)將y表示為x的函數(shù);
(2)求當x為何值時,y取得最小值,并求出此最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.為了研究變量x與y的線性相關(guān)性,甲、乙兩人分別做了研究,并利用線性回歸方法得到回歸方程l1和l2,非常巧合的是,兩人計算的$\overline x$相同,$\overline y$也相同,下列說法正確的是( 。
A.l1和l2相同B.l1和l2一定平行
C.l1和l2相交于點($\overline x$,$\overline y$)D.無法判斷l(xiāng)1和l2是否相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足$\frac{a+c}{a+b}$=$\frac{b-a}{c}$.
(1)求角B的大;
(2)若△ABC最大邊的邊長為$\sqrt{14}$,且sinA=2sinC,求最小邊長.

查看答案和解析>>

同步練習冊答案