20.函數(shù)y=(x3-x)2|x|圖象大致是( 。
A.B.C.D.

分析 根據(jù)函數(shù)y為奇函數(shù),它的圖象關(guān)于原點對稱,當0<x<1時,y<0;當x>1時,y>0,結(jié)合所給的選項得出結(jié)論.

解答 解:由于函數(shù)y=(x3-x)2|x|為奇函數(shù),故它的圖象關(guān)于原點對稱,
當0<x<1時,y<0;當x>1時,y>0,
故選:B.

點評 本題主要考查函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.設(shè)向量$\overrightarrow{a}$=(2cosx,1),向量$\overrightarrow$=$(\sqrt{3}cosx,\;\;sin2x-\sqrt{3})$,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)若$α∈(\frac{π}{2},\;π)$,且sinα=$\frac{5}{13}$,求$f(\frac{α}{2})$的值;
(Ⅱ)已知△ABC的三內(nèi)角A,B,C的對邊分別為a,b,c,若a=2$\sqrt{3}$,b=3$\sqrt{2}$,f(A)=1,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=sin(2x-$\frac{π}{2}$)(x∈R)下列結(jié)論錯誤的是( 。
A.函數(shù)f(x)的最小正周期為πB.函數(shù)f(x)是偶函數(shù)
C.函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上是增函數(shù)D.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{4}$對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知變量x、t滿足約束條件$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,則目標函數(shù)z=3x-y的最大值是( 。
A.-4B.-$\frac{3}{2}$C.-1D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,在正方體ABCD-A1B1C1D1中,P為棱DC的中點,則D1P與BC1所在的直線所成角的余弦值等于$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.長方體ABCD-A1B1C1D1中,AA1=3,AD=4,AB=5,則直線BD1與平面ABCD所成的角的正弦值是(  )
A.$\frac{4}{5}$B.$\frac{{3\sqrt{2}}}{10}$C.$\frac{3}{{\sqrt{34}}}$D.$\frac{5}{{\sqrt{34}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,四邊形ABCD與BDEF均為菱形,設(shè)AC與BD相交于點O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求證:FC∥平面EAD;
(2)求直線AF與平面BCF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且$PA=AD=DC=\frac{1}{2}$,AB=1,M是PB的中點.
(1)求AC與PB所成的角的余弦值;
(2)求PC與平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.${∫}_{-1}^{1}$(1-sin5x+xcos2x+$\sqrt{1-{x}^{2}}$)dx=2+$\frac{π}{2}$.

查看答案和解析>>

同步練習冊答案