分析 直接利用數(shù)學(xué)歸納法的證明步驟證明不等式,(1)驗證n=1時不等式成立;(2)假設(shè)當(dāng)n=k(k≥1)時成立,利用放縮法證明n=k+1時,不等式也成立.
解答 證明:(1)當(dāng)n=2時,不等式左邊=1+$\frac{1}{3}$=$\frac{4}{3}$=$\frac{8}{6}$=$\frac{\sqrt{64}}{6}$,不等式右邊=$\frac{\sqrt{5}}{2}$=$\frac{3\sqrt{5}}{6}$=$\frac{\sqrt{45}}{6}$,不等式成立,
(2)假設(shè)n=k時,不等式成立,即:(1+$\frac{1}{3}$)(1+$\frac{1}{5}$)(1+$\frac{1}{7}$)…(1+$\frac{1}{2k-1}$)>$\frac{\sqrt{2k+1}}{2}$,
那么當(dāng)n=k+1是,即(1+$\frac{1}{3}$)(1+$\frac{1}{5}$)(1+$\frac{1}{7}$)…(1+$\frac{1}{2k-1}$)(1+$\frac{1}{2k+1}$)>$\frac{\sqrt{2k+1}}{2}$•(1+$\frac{1}{2k+1}$)=$\frac{\sqrt{2k+1}}{2}$•$\frac{2k+2}{2k+1}$=$\frac{k+1}{\sqrt{2k+1}}$,
∵(2k+1)(2k+3)<4(k+1)2,
∴$\sqrt{2k+1}$•$\sqrt{2k+3}$<2(k+1),
∴$\frac{k+1}{\sqrt{2k+1}}$>$\frac{\sqrt{2k+3}}{2}$,
∴當(dāng)n=k+1時,不等式也成立,
根據(jù)(1)(2)可得不等式對所有的n≥2都成立.
點評 本題是中檔題,考查數(shù)學(xué)歸納法的證明步驟,注意不等式的證明方法,放縮法的應(yīng)用,考查邏輯推理能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S10>S9 | B. | a8=0 | ||
C. | d<0 | D. | S7與S8均為Sn的最大值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com