12.如圖是由4個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形,若直角三角形中較小的內(nèi)角為θ,大正方形的面積是1,小正方形的面積是$\frac{1}{25}$,則tanθ的值是(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

分析 4個(gè)相同的直角三角形與中間的面積是$\frac{1}{25}$小正方形拼成的一個(gè)面積是1大正方形,設(shè)角形短直角邊為x,然后根據(jù)余弦定理(在直角三角形中也可稱(chēng)為勾股定理),構(gòu)造出關(guān)于x的方程,解方程求出三角形各邊長(zhǎng),即可得到θ的各三角函數(shù)值,進(jìn)而得到tanθ的值

解答 解:設(shè)三角形較小直角邊為x
∵S小正方形=是$\frac{1}{25}$,
∴小正方形邊長(zhǎng)=$\frac{1}{5}$,
∴直角三角形另一條直角邊為x+$\frac{1}{5}$,
∵S大正方形=1,
∴大正方形邊長(zhǎng)=1,
根據(jù)勾股定理,x2+(x+$\frac{1}{5}$)2=12,
解得x=$\frac{3}{5}$,
∴sinθ=$\frac{3}{5}$,cosθ=$\frac{4}{5}$
∴tanθ=$\frac{3}{4}$,
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是余弦定理,方程思想,根據(jù)已知,設(shè)出求知的邊長(zhǎng),根據(jù)余弦定理(在直角三角形中也可稱(chēng)為勾股定理),我們構(gòu)造出關(guān)于x的方程,是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如果x=$\frac{1}{3-5\sqrt{2}}$,y=3+$\sqrt{2}$π,集合M={m|m=a+b $\sqrt{2}$,a,b∈Q},則x∈M,y∉M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知數(shù)列的通項(xiàng)公式為an=n(n+1),那么a5=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,tanA+tanB-$\sqrt{3}$tanAtanB=-$\sqrt{3}$,且a,b恰好為一元二次方程x2-mx+8=0的兩根,則S△ABC=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知y=f(x)是定義在R上的奇函數(shù),且f(x)=$\left\{\begin{array}{l}{(x+2)^{2}-1,x<-1}\\{0,-1≤x≤0}\end{array}\right.$,當(dāng)函數(shù)y=f(x-1)-$\frac{1}{2}$-k(x-2)(其中k>0)的零點(diǎn)個(gè)數(shù)取得最大值時(shí),則實(shí)數(shù)k的數(shù)值范圍是( 。
A.(0,6-$\sqrt{30}$)B.(6-$\sqrt{30}$,2$-\sqrt{2}$)C.($\frac{1}{4}$,6-$\sqrt{30}$)D.($\frac{1}{4}$,2-$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,用6種不同的顏色把圖中A,B,C,D4塊區(qū)域分開(kāi),若相鄰區(qū)域不能涂同一種顏色,則涂色方法共有480種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n-1,則數(shù)列{an2}的前n項(xiàng)和Tn為$\frac{{4}^{n}-1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若Sn-1是an與Sn的等比中項(xiàng),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知向量$\overrightarrow{a}$,$\overrightarrow$滿(mǎn)足|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow$=(1,3),且(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$.
(1)求向量$\overrightarrow{a}$的坐標(biāo);  
(2)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

同步練習(xí)冊(cè)答案