16.當(dāng)k為何值時(shí),x2-(k+1)x+2k-1=0的根
(1)都在(1,4)內(nèi);
(2)一個(gè)大于4,另一個(gè)小于4;
(3)都小于2?

分析 令f(x)=x2-(k+1)x+2k-1,
(1)若x2-(k+1)x+2k-1=0的根都在(1,4)內(nèi);則$\left\{\begin{array}{l}△=(k+1)^{2}-4(2k-1)≥0\\ 1<\frac{k+1}{2}<4\\ f(1)=k-1>0\\ f(4)=11-2k>0\end{array}\right.$解得k的取值范圍;
(2)若x2-(k+1)x+2k-1=0的根一個(gè)大于4,另一個(gè)小于4;則$\begin{array}{c}f(4)=11-2k<0\end{array}\right.$,解得k的取值范圍;
(3)若x2-(k+1)x+2k-1=0的根都小于2,則$\left\{\begin{array}{l}△={(k+1)}^{2}-4(2k-1)≥0\\ \frac{k+1}{2}<2\end{array}\right.$,解得k的取值范圍.

解答 解:令f(x)=x2-(k+1)x+2k-1,
(1)若x2-(k+1)x+2k-1=0的根都在(1,4)內(nèi);
則$\left\{\begin{array}{l}△=(k+1)^{2}-4(2k-1)≥0\\ 1<\frac{k+1}{2}<4\\ f(1)=k-1>0\\ f(4)=11-2k>0\end{array}\right.$
解得:k∈[5,$\frac{11}{2}$)
(2)若x2-(k+1)x+2k-1=0的根一個(gè)大于4,另一個(gè)小于4;
則$\begin{array}{c}f(4)=11-2k<0\end{array}\right.$,
解得:k∈($\frac{11}{2}$,+∞)
(3)若x2-(k+1)x+2k-1=0的根都小于2,
則$\left\{\begin{array}{l}△={(k+1)}^{2}-4(2k-1)≥0\\ \frac{k+1}{2}<2\end{array}\right.$,
解得:k∈(-∞,1]

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),函數(shù)的零點(diǎn)與方程根的關(guān)系,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)=sin\frac{ωx}{2}cos(\frac{ωx}{2}+\frac{π}{4})-cos\frac{ωx}{2}sin(\frac{ωx}{2}-\frac{π}{4})$(x∈R)的最小正周期為π.
(1)確定ω的值;
(2)求函數(shù)f(x)在區(qū)間$[-\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知數(shù)列{an}滿足an+1+an=n,若a1=2,則a8-a4=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.i是虛數(shù)單位,計(jì)算$\frac{8+4i}{3-i}$的結(jié)果為2+2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是( 。
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)全集U={x|1<x<4},集合A={x|0<log2x<1},則∁UA=( 。
A.{x|1<x≤2}B.{x|2≤x<3}C.{x|2<x<4}D.{x|2≤x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(2-x)(x≤0)}\\{f(x-1)-f(x-2)(x>0)}\end{array}\right.$,則f(2016)的值為log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}滿足a1=2,an>0,且$\frac{{{a}_{n+1}}^{2}}{4}$-$\frac{{{a}_{n}}^{2}}{4}$=1(n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=($\frac{2}{{a}_{n}}$)4.當(dāng)n≥2時(shí),求證:b2+b3+…+bn≥$\frac{n-1}{2(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$在正方形網(wǎng)絡(luò)中的位置如圖所示,若$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow$(λ,μ∈R),則$\frac{λ}{μ}$=( 。
A.-8B.-4C.4D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案